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ABSTRACT. The well-known dual pair of Napoleon equilateral triangles intrinsic to each triangle is extended to in-
finite sequences of them, shown to be special cases of infinite regular hexagon sequences on each triangle. A set of 
hexagon-to-hexagon transformations, the hex operators, is defined for this purpose, a set forming an abelian monoid 
under function composition. The sequences result from arbitrary strings of hex operators applied to a particular 
truncation of a given triangle to a hexagon. The deep structure of the sequence constructions reveals surprising infi-
nite sequences of non-concentric, symmetric equilateral triangle pairs parallel to one of the sequences of hexagons 
and provides the most visually striking contribution. Extensive experimentation with a plane geometry educational 
program inspired all theorems, proofs of which utilize eigenvector analysis of polygons in the complex plane. 

INTRODUCTION. This paper is an exercise in the geometry of the complex plane—utilizing the 
'eigenpolygon' decomposition of polygons in the complex plane—that extends the well-known 
pair of Napoleon equilateral triangles intrinsic to each triangle to infinite sequences of them. 
These sequences, in turn, are special cases of infinite regular hexagon sequences on each triangle. 

Another theme is the benefit of experimental use of computer graphics in plane geometry. 
Geometric constructions in this study are tedious—often infeasible—for the unaided person, yet 
the intuitions gained from dynamic interaction with the complicated constructions are powerful. 
Each theorem is the direct result of conjecture inspired by experimentation with normally un-
wieldy geometric constructions. The software used is an educational program [Sketchpad]. 

Napoleon’s Theorem describes a transformation mapping an arbitrary triangle to an equilat-
eral triangle [Chang-Sederberg 1997; Coxeter-Greitzer 1967; Wetzel 1992]. It is actually a dual 
pair of transformations leading to the so-called outward and inward Napoleon triangles, called 
positive and negative here for consistency. Fukuta generalizes the Napoleon transformation to a 
2-step transformation that converts an arbitrary triangle to a regular hexagon [Fukuta 1996a; 
Garfunkel-Stahl 1965; Lossers 1997] and then to a 3-step transformation yielding a different regu-
lar hexagon [Chapman 1997; Fukuta 1996b] strongly concentric with the first, meaning they are 
parallel as well (Figure 1). Each transformation is parameterized by � . At 0� � , the first Fukuta 
hexagon is the positive Napoleon triangle plus its Star-of-David complementary equilateral. 
Similarly, all hexagon sequences in the paper can be interpreted as equilateral triangle se-
quences. At 0� � , most include one or both Napoleon triangles. 

Iteration of the middle step in the 3-step Fukuta transformation is shown to create an infinite 
sequence of strongly concentric regular hexagons, each being 2 times (the size of) its predecessor 
(in edge length). The set of two transformations is enlarged to an infinite set by generalizing to 
what are called the hexagon construction operators, or hex operators, and applying them itera-
tively or in any order to generate infinite sequences of concentric regular hexagons. One such se-
quence has each hexagon 3  times its predecessor and rotated 6

�  from it (Figure 2). Another has 
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each hexagon 2 or 3 times a preceding one and strongly concentric with it (Figure 3). The struc-
ture of the transformation set itself is shown to be an abelian monoid in the case of interest. 

Finally, the deep structure of the hexagon sequences reveals surprising infinite sequences of 
non-concentric, symmetric equilateral triangle pairs parallel to one of the sequences of hexagons. 
Each emerges from a chaos of irregular and regular hexagons (Figure 4) in the most visually in-
teresting contribution of the paper (Figures 5-6). 

1. HEX OPERATORS. An arbitrary hexagon of six points 1 2 3 4 5 6H H H H H H  is abbreviated *H , 
with iH  an arbitrary vertex. Arithmetic on subscripts i is modulo 6. Pairs 3i iH H

�
 are the main di-

agonals. *0  is the degenerate hexagon at the origin.  
A positive (negative) triangle has vertices in counterclockwise (clockwise) order. 
Define positive n-interlaced hex operator nI  on hexagon *H : For 0n ≥  and all i, erect positive 

equilateral triangle 1i i i nR H H+ − , a generating triangle. Then *
nHI  is hexagon *R . Negative n-

interlaced hex operator ni  is defined similarly but with negative generating triangles 1i i i nr H H+ − . 
Mnemonic names are assigned for 2n ≤ . 0P I≡  and 0p i≡  are the progressive hex operators, 

since each builds equilaterals on successive pairs of vertices. The nonprogressive ones are 1I I≡  
and 1i i≡ , the interlaced hex operators, and 2B I≡  and 2b i≡ , which are bi-interlaced. 

Let F be the set of hex operators and �F  the set of nonempty compositions on F. These are 
written as concatenations—eg, *PIP  means *( ( ))PI P . For empty string �  the identity mapping a 
hexagon to itself, * { }F F φ+= ∪  is the set of strings of hex operators. The principal purpose here is 
to generalize the Fukuta (Napoleon) results to infinite sequences of hexagons (equilaterals) on a 
triangle by exploring the actions of arbitrary strings in *F .  

Define hex operator iterate by example: nP , 0n � , is defined by 0 ��P , 1 �P P , 1n n� �P PP . 
Define the successive centroids operator C on a hexagon *H : Find the centroid iC  of each suc-

cessive triplet 1 1i i iH H H
� �

 of vertices of *H . Then *HC  is hexagon *C . 

2. FUKUTA’S PROBLEMS. In arbitrary triangle ABC, let 1P  and 2P , 3P  and 4P , 5P  and 6P  be the 
points on the sides BC, CA, and AB respectively (Figure 1), such that 5 4AP P , 6 1P BP , and 3 2P P C  are 
congruent with one another and similar to ABC—ie, *P  is the hexagon obtained by truncating a 
copy of 5 4AP P  from each vertex of ABC. Hence *P  is called a truncation of ABC, parameterized  
by 1BP BCσ = , 0 1�� � . If 1� �� � , then 1P C B� �� � , and similarly for all iP . Let A’, B’, C’ 
be the points of intersection of 1 4PP  and 2 5P P , 3 6P P  and 1 4PP , 2 5P P  and 3 6P P , respectively.  

[Insert Figure 1 about here.] 
Figure 1 shows the results of applying P and IP to the truncation *P  of triangle ABC: *R =  

*PP  and *PIP  (dashed) are irregular hexagons. Remarkably, both * *
0G P� CP  and *

1G = *PCIP  
(solid bold) are regular hexagons concentric with ABC—ie, centered on its centroid. The two 
hexagons are strongly concentric, and one of them is 2 times the other, and similarly for *

0g �  
*PCp  and *

1g � *PCip  (solid light). These are superimposed in Figure 1 to show that the two sets 
of regular hexagons are different, in general, and not strongly concentric with one another. Let 
�  denote the angle between positive and negative cases. 

There are many other interesting aspects of Fukuta’s problems indicated: The main diago-
nals of *PIP  are concurrent, equal in length, equally spaced radially, parallel respectively to the 
sides of *PCIP  and 3 times their size. So are the main diagonals of *PP  (relative *PCP ), which 
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are a subset of the *PIP  main diagonals. Similar results hold for the *Pip  and *Pp  main diago-
nals. Furthermore, they intersect the *PIP  and *PP  main diagonals at the points A’, B’, and C’. 
Regular hexagons *PCP  and *PCp  are strongly concentric if ABC is isosceles, as are *PCIP  and 

*PCip . In this case, 0� � ; generally �  varies as ABC changes but is independent of � . *PCP  
and *PCp  become the same hexagon in the degenerate case of an isosceles triangle with height 0, 
its base bisected by the third vertex. These other aspects also generalize but, for brevity, will not 
be further pursued. 

3. TERMINOLOGY. For orientation, only the first and second vertex of a hexagon are labeled, 
generally by 1 and 2. A single shaded triangle ABC is used in all figures (to within scaling) for 
comparison, so redundant labels A, B, C, and iP  are omitted in figures after Figure 1, as are main 
diagonals and triangle A’B’C’. 

All sequences here begin with a construction, the initialization, on truncation *P  of ABC, 
which is normally progressive, but nonprogressive initializations are also treated. A typical pro-
cedure is: (1) Truncate a triangle to a hexagon. (2) Apply a hex operator to the result of the pre-
ceding step. (3) Repeat step 2 0j �  times with various hex operators. (4) Apply C to the hexagon 
from step 3 to yield sequence member *

jH . Step 2 for 0j �  is the initialization.  
A hex operator applied to a hexagon yields a generating hexagon. Use of successive centroids 

operator C on a generating hexagon is a reduction of it. In Figure 1, *PP  is the irregular generat-
ing hexagon on truncation *P , and *PCP  is the reduction of it to a regular one. In all figures gen-
erating hexagons are dashed and reductions of them solid. 

It is useful to embed constructions in the complex plane, with origin at the centroid of ABC, 
so 0A B C� � � . Thus 2 4 0i i iP P P+ ++ + =  by expanding each in terms of � . The centroid of an arbi-
trary triangle PQR is � �1

3 P Q R� � . Define operators 3ie �� �  and 6ie �� � , with conjugates �  and 
� . A positive regular hexagon *H  centered on the origin, vertices increasing counterclockwise, 
has 1i iH H�

�
� , and a negative regular one 1i iH H�

�
� . A positive equilateral triangle—eg, 1 2 1R P P  

in Figure 1—is described by 1 2 1R P Pω ω= + ; a negative one by 1 2 1r P Pω ω= + . 

4. SAMENESS. Define equivalence relation 	 , sameness, such that * *G H	  if hexagon *G  is con-
gruent, without rotation or translation, with hexagon *H . Thus two concentric hexagons are the 
same if they are identical when vertex order and labels are ignored. 

Consider hexagon *H  (from a given class of hexagons) and hex operator strings *
1 2, 
F F F . If 

* *
1 2H H	CF CF , then write 1 2	F F  (for that class). If * *

1 2H s H	CF CF , s  an arbitrary scalar con-
stant, then write 1 2s	F F . Similarly, if * *

1 2
iH e H�	CF CF , write 1 2

ie �	F F . For regular hexagons 
write mod( 3)

1 2
ie � �	F F —eg, 2

�� � �  implies 1 2�	F F , or 3
n�� � � , n integer, implies 1 2	F F . 

As a first application of sameness, consider the n-interlaced hex operators. It is not difficult 
to see that the positive (negative) 3- and 4-interlaced hex operators are just i and p (I and P), re-
spectively, using 	  equivalence. Thus it suffices to restrict 2n ≤ . Since B and b are the same, 
only B is studied. Hence sameness collapses the set of hex operators to F = {P, I, B, p, i}. 

5. EIGENPOLYGON ANALYSIS. The shift (backwards) operator S is defined for hexagon *G  by 
*

1: i iH G H G
�

� �*S  and its inverse S  by *
1: i iH G H G
�

� �*S . As shown in [Chang-Sederberg 
1997], S is a linear operator with eigenvalues i� , the sixth roots of unity, and eigenvectors 

( ) 2 3 4 5[1 ]i i i i i ie ω ω ω ω ω= . Similarly, S  is a linear operator with the same eigenvectors 
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but with eigenvalues i� . Any hexagon can be expressed as a complex linear sum of these eigen-
vectors—hence 'eigenpolygons' or 'basis polygons' [Glassner 1999]. For a polygon with centroid 
at the origin, as assumed here, the sixth eigenvector is not used. 

All hex operators can be written as expressions of the identity and shift operators: nI =  
nS Sω ω+  and n

ni S Sω ω= + . So can the successive centroids operator: 1
3 ( )C S Sφ= + + . Thus all 

operators of interest are linear, with the eigenvectors above and easily computed eigenvalues: 
1 1i niω ω− −+  and 1 1i niω ω+ ++  for the hex operators, respectively, and 1

3 ( 1 )i i� �� �  for C. Let �X  be 
the vector of eigenvalues for operator X. Then, with simplification, 

2 2 2[ 1 2 ( 1) 0 1], [0 ( 1) 2 ( 1) 1]� � � � � � � � � � � � �� � � � � � � � � �P p  
[2 1 1 2 1 1], [ 1 2 1 1 2 1]� �� � � � � � � �I i  

2 2 2 1 2
3 3 3[ ( 1) ( 1) ( 1) 1], [ 0 0 1]� � � � � � � � �� � � � � � � � �B C . 

Let �XY  be the vector obtained from pairwise multiplication of �X  and �Y —eg, 
2 1
3 3[ ( 1) 0 ( 1) 0 0 1]� � � �� � � �CP . 

The eigenpolygon decomposition of truncation *P  has particular importance here. Let E  be 
the 6×6 matrix where each row i is eigenvector ( )ie  and each column i is called ( )iE . Then *P E� a  
for complex coefficients a . Inverting E  yields a  in terms of given parameters: 

2 21
6 [ ( 1) 0 ( 1) 0]V v V v�� � 	� 	� � �� � � � �a , 

where V A B C� �� � � � , v A B C� �� � � � , and 1 3	 �� � . Then the effect of operator X on 
truncation *P  is computed from * ( ) ( ) ( )( )

i i

i i i
iP X X XX a e a e a Eλ= = = ⋅∑ ∑ , where Xa  is the vector ob-

tained from pairwise multiplication of �X  and a. All elements of CPa  are 0 except the first, so 
*PCP  must be a regular hexagon, the first eigenpolygon (1)e , with size and orientation given by 

multiplier 3 V� —ie, * (1)
0 3G V�� e . This is just the solution to Fukuta’s first problem. Similar analy-

sis for *PCIP  shows the same result but with additional multiplier 1( ) 2Iλ = —ie, * (1)
1 32G V�� e , 

the solution to Fukuta’s second problem. The operators annihilate all but one eigenpolygon, 
which is a regular hexagon. Similarly for the negative Fukuta cases: * (5)

0 3g v�� e , * (5)
1 32g v�� e . At 

0� � , * (1)1
0 3G V� e  and * (5)1

0 3g v� e , the Napoleon hexagons, include the Napoleon equilaterals. 

6. ALGEBRAIC STRUCTURE. The algebraic structure of F is established first for hex operators 
applied to arbitrary hexagons, then refined for application to hexagons that are regular under 
reduction by C. The following useful result can be established straightforwardly: 

Lemma 1 (Duality). For *H  an arbitrary hexagon and *h  the same hexagon with vertices ordered oppo-
sitely, (i) *hP  ≅ *Hp , (ii) *hp  ≅ *HP , (iii) *hI  ≅ *Hi , (iv) *hi  ≅ *HI , and (v) *hB  ≅ *HB . 

So P and p are duals on vertex order, as are I and i; and B is self-dual. Thus it suffices to state 
and prove a theorem for the positive case only. 

It is easily checked that all hex operators are commutative and associative, hence: 

Lemma 2 (Semigroup). The hex operators F under function composition is an abelian semigroup. 

There is now enough machinery to derive the principal tool for special hexagons: 

Lemma 3 (Identity). If *HC  is positive regular, then *HCP , *HCI , * *H H	CB CP , *HCp , and *HCi  
are too, with 3�	P  (and 2 3	P ), 2	I , 	B P , 0	p , and 1	i . 

Proof. *HC  positive regular amounts to the requirement that all eigenpolygons in its decomposi-
tion be annihilated but the first one. Then clearly *HIC  simply multiplies the given hexagon by 
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2—ie, the only operative eigenvalue in �I  is 2—for * *2H H�IC C . But I and C commute, so 
* *H H�IC CI . The other results follow from operative eigenvalues 1 3� �� � , 1 3� �� � , 0, 

and –1, respectively. � 

The negative case follows by duality: 0	P , 1	I , 	B p , 3�	p  (and 2 3	p ), and 2	i  for 
*HC  negative regular. 
Immediate from i being the unique identity for the Lemma 2 semigroup in a special case: 

Lemma 4 (Monoid). The hex operators F, restricted to hexagons that reduce under C to positive regular, 
under function composition form an abelian monoid. 

So, in the monoid, 1 2 3 	(F F )F 1 2 3 )F (F F , 1 2 2 1	F F F F , and 	 	1 1 1iF F i F , for *
1 2 3, , 
F F F F . Because 

	B P , B is redundant in the monoid. 
The first Fukuta transformation gives *PCP  positive regular, so iteration of Lemma 3 yields: 

Lemma 5 (Progressive Initialization). For *
1 PF P  a hexagon construction on truncation *P  of ABC, 

*
1 
F F , reduction by C yields a positive regular hexagon—ie, *

1 PCF P  is positive regular. 

Figure 2 shows the result of applying P or p iteratively to truncation *P . 
[Insert Figure 2 about here.] 

Eigenpolygon analysis shows that irregular hexagons result from initialization by I, B, or i 
instead of P or p. The following complements Lemma 5 by stating when a construction on a 
nonprogressive initialization may too yield a regular hexagon. 

Lemma 6 (Nonprogressive Initialization). For *
1 PF I  ( *

1 PF B ) on truncation *P , *
1 
F F , reduction by 

CP (instead of C) yields a positive regular hexagon—ie, *
1 PCPF I  ( *

1 PCPF B ) is positive regular. 

Proof. By commutativity, * *
1 1P P�CPF I CF IP , positive regular by Lemma 5. Similarly for B. � 

Hexagon sequences generated by strings 1F  containing no operators P or p can be shown ir-
regular by eigenpolygon analysis, so Lemma 6 states that no new regular hexagons result from 
nonprogressive initializations. It also implies that each regular hexagon sequence can be gener-
ated in a different way—eg, in place of construction *a b PI P P  reduced by C, use construction 

*a bPI B  reduced by CP to the same regular hexagon. 	B P  in this case only after an application of 
at least one P, hence B is not redundant in F, in general, although it is in the monoid. 

7. INFINITE REGULAR HEXAGON SEQUENCES. The most general regular hexagon se-
quences due to the hex operators are described next, where *H  a 2-3 multiple of *G  means *H 	  

*2 3m nG , 0m � , 0n � , and where disjoint means disjoint as sets not as geometry. 

Theorem 1. For arbitrary triangle ABC with truncation *P , there exist these infinite, concentric but dis-
joint, positive regular hexagon sequences centered on ABC, generated by strings in *F  for 0j � : 
(i) * * *

0{ :jS S P� � CPS , *
jS  a 2-3 multiple of * *

0 0S G� }, 
(ii) 

0

* * 2 *{ :
j

S S P
� � �
� � CPS , *

j
S
�

 a 2-3 multiple of 
0

* *
1S H

�
� }. 

Proof. By Lemma 3, iterates of I and 2P  multiply a positive regular hexagon by powers of 2 or 3, 
respectively, into strongly concentric positive regular hexagons of larger size. 2-3 multiples can 
be ordered uniquely by numeric size. Suppose 2 3m n  is the next factor in succession. Then 

* 2 *( )m n
jS P� CI P P  generates the corresponding element of S and is positive regular. 

�
S  is gener-

ated the same way as S but with one extra application of P which rotates the sequence 6
�  from S. 

That is, *

j
S
�
� 2 2 * *( )m n

jP S�	CI P P 3 . Each of S and 
�

S  is strongly concentric. � 
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Figure 3 shows the first seven elements of S and five of 
�

S . The S elements are obtained by 
applying 0I , 1I , 2P , 2I , 1 2I P  (or its commuted equivalents), 3I , and 4P , respectively, to *PP . Let s 
and 

�
s  be the duals to S and 

�
S . 

�
S  and 

�
s  do not contain Napoleon hexagons at 0� � . 

[Insert Figure 3 about here.] 

Theorem 2. Concentric sequence *{ } { } { } { } {0 }A = S s S sτ τ∪ ∪ ∪ ∪  is a disjoint union, in general, con-
taining every unique regular hexagon (by 	  equivalence) generable by strings in *F . 

Proof. Let A be the ordered union of the two sequences of Theorem 1, the two from its dual, and 
the one element * *

0 0A �  absent from all of them. These are disjoint sets, except in the degenerate 
case of ABC an isosceles triangle of height 0, mentioned earlier, when S and s (

�
S  and 

�
s ) are the 

same; but A is never strongly concentric. Because of commutativity and Lemma 6 (and its dual), 
it suffices to consider only constructions of the form *a b c d HCI P i p  on the initializations *H 
 
{ *PP , *Pp }, for non-negative integers a, b, c, and d. S and 

�
S  exhaust all cases for which 0c d� �  

on * *H P� P . For this initialization, ci , 0c � , is an identity creating no new hexagons, and dp , 
0d � , always zeroes to *0 . The negative case follows by duality, so A exhausts *F . � 

Simply iterating the elements of F generates useful infinite regular subsequences of A. The 
following is easily established by Lemma 3 and simple induction. 

Theorem 3. For arbitrary triangle ABC with truncation *P , there exist these infinite concentric positive 
regular hexagon sequences centered on ABC, generated respectively by iterates of I and P for 0j � : 
(i) *{ jG�G : * *

0G P� CP , *
1jG
�

 2 times *
jG }, 

(ii) *{ jH�H : * *
0H P� CP , *

1jH
�

 3  times *
jH  and rotated 6

� }. 

Let g and h be the dual sequences generated by iterates of i and p. The first two elements of 
G and g (H and h) are shown in Figure 1 (Figure 2). Fukuta’s two positive-case (negative-case) 
hexagons are the first two in sequence G (g), hence S (s). G is strongly concentric and a subset of 
S. The even elements of H are also a subset of S, but the odd ones belong to 

�
S .  

8. DEEP STRUCTURE. Although identities mi  contribute nothing to hex operator constructions 
reduced by C, they do induce an interesting regular structure in general. Let * *m

mU P� i P  be the 
generating hexagon for mi . Figure 4 shows that the identity cluster *{ ,mU 0}m �  of distinct generat-
ing hexagons all map to one regular hexagon *PCP . Nevertheless, personal computer experi-
ments [Sketchpad] strongly suggest the sceptre structure defined in the lemma below, where a 
sceptre (from the acronym of “symmetric, congruent, equilateral, parallel triangles”) is always 
formed by the intersections of two triples of concurrent equiangular lines, with the lines of one 
triple pairwise parallel those of the other (Figure 4). 

[Insert Figure 4 about here.] 

Lemma 7 (Identity Cluster). The identity cluster on truncation *P  of ABC has these properties:  
(i) For each i, vertices labeled i, m even, and i+3, m odd, form line iL  parallel a side of hexagons g. Call 

iL  a vertex locus. 
(ii) At 1

3� � , every hexagon *
mU  is the same as the Napoleon hexagon, strongly concentric with its re-

duction by C, and 3
2  its size—ie, * *3

2m mU U	 C . 
(iii) iL , 2iL

�
, 4iL

�
 are concurrent. Let 1L  be the triple for 1i � , 2L  for 2i � , and 1C  and 2C  be the cor-

responding points of concurrency. 
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(iv) The elements of 2L  intersect C, A, and B, respectively. 
(v) The intersection points of 1L  and 2L  form a sceptre—ie, a pair of congruent parallel equilateral tri-

angles 1 1 3 4T T � C , 2 2 6 1T T � C , with 1i i iT L L
�

� � —parallel hexagons g. 
(vi) 1 2C C  is collinear the centroid of ABC; 1 2C C  is the length of the identity cluster main diagonals. 
(vii) At 1

3σ = , 1C  and 2C  are symmetric about the origin. At 2
3� � , 1C  or 2C  is coincident with the 

origin. At 1� � , 1C  and 2C  are coincident. 
(viii) 6 1 3 4T TT T  is a parallelogram with angle � , 6 1 1T T 
 , 3 4 2T T 
 , 1 3TT � 1 2C C , and 1 3 5TT T , 2 4 6T T T  

are a pair of congruent equilaterals (a sceptre) parallel hexagons G, with sides 3 times a side of *
0G . 

Proof. (i) *
mU � (1)( 1)m sV� �e 1 (2)( 2)m rv�� e (4)rVe+ , with 6r �� , 2s �� . Experiment suggests *

mU −  
3 *

1mUS −  are vertex loci. Indeed, * 3 *
1m mU U
�

� �S 1 (2)2( 2)m veρ−− , 1m � , and induction on m proves that 
all these lines must pass through *

0U . So iL  has direction 2
iv ( )e , parallel sides of hexagons g. 

 (ii) 1
3� �  gives 0r � , 1

3s � , and *
mU � (1)1

3 ( 1)mV� e , a regular hexagon the same as the Napo-
leon hexagon, which reduces to *

mU �C (1)2
9 ( 1)mV� e *

0G� . 
(iii) Without loss of generality, the equations for iL  can be computed from *

2U  and *
0U  as 

equations * * * * * * * *
2 0 2 0 2 0 2 0( ) ( ) 0U U z U U z U U U U� � � � � � . From (i), * * (2)

2 0U U v�� � � e , so they are  
(4) (2) (5) (2) (1) (4)( ) ( ) 0v z v z vV s r vV s r� � � � � � �e e e e e e . The systems of equations for 1L , 2L  are 

( )

( ) 0

( ) 1

v v a vV vV z

v v a vV vV z

v v a vV vV

ω ω
ω ω

⎡ ⎤− − + ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦

, 
( )

( ) 0

( ) 1

v v b vV vV z

v v b vV vV z

v v b vV vV

ω ω

ω ω

⎡ ⎤− − ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

, 

a s r= + , b s r= − . Both determinants vanish, so 1L , 2L  are concurrent, respectively. Let vu  be 
the unit vector for v. Solving gives 2

1 va VC u= − , 2
2 vb VC u= . So 2

1 2 2 1 V�� � � vC C C C u . 
(iv) *

0U = (1)sVe (2) (4)2rv rVe e− + . 3V v A� � �  and 1
3s r� � , so 

40U A− = vσ  is parallel 4L  
through point 

40U , and A must lie on 4L . Similarly for 
60U B vωσ− = − , 

20U − 2C v� �� . 
(v) A main diagonal of each generating hexagon connects a point on a vertex locus in 1L  to 

another in 2L . Thus 1C  and 2C  are not the same in general. Since the iL  parallel the sides of 
hexagons g, so must the equilateral triangles of the sceptre. 

(vi) The equations in (iii) for 1C , 2C  show them collinear the origin, and 1 2C C Vσ= , the 
length of the main diagonals of the identity cluster. 

(vii) These special cases are readily derived from the formulas in (iii) for 1C , 2C . 
(viii) 1 2C C  is 3 times the side of *

0G  since it has the same length as a main diagonal of the 
identity cluster. Compute 1T , 3T  using equations in (iii) and the difference 1 3T T� �  Vσ . � 

A sceptre is rotationally symmetric and has six equal sides and angles, so is, in a sense, a 
regular hexagon—albeit a disconnected one. The next theorem establishes infinite sequences of 
them too. Let 1 2 1 3 4 2 6 1T T T T T� � � � � C C  denote a sceptre, where the labeling of Lemma 7 is used 
for right-handed sceptres in general (see left-handed sceptre in Figure 6). Call line segment 1 2C C  
the main diagonal of a sceptre. In general, a sceptre T �  is not centered at the origin. Let oT �  be its 
offset, and kT

��  be its equilateral triangle k� , 1k =  or 2. 
Let sceptre constructor *( )H  be defined on hexagons *H  that are hex operator constructions 

on *PP . *( )H  is the corresponding dual sceptre constructor on *Pp . *( )H  is constructed, 
without loss of generality, as follows: (1) Form directed line segments iL  from, say, 3 *( )H�i S  or 

2 *( )H��i . (2) If the iL  meet the conditions defining a sceptre, return the sceptre, else *( )H  is 
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undefined. The next lemma establishes that *( )H  is defined for all hexagons in its domain. Let 

0E�  be the Lemma 7 sceptre, but centered at the origin, and let 2r V� vr u , for which 0�r  at 
1
3� � . Then *

0 ( )T P� � �� 0E� � r , so 0 0 0T oT E� � �� �  and 0oT � � �r . Let 0�  be the sceptre of size 0 
at the origin. Extend sameness and 2-3 multiples to sceptres, and arbitrary hex operator X to 
sceptres by * *[ ( )] ( )H H�X � .  

Lemma 8 (Sceptre Operators). For sceptre T �  from hex operators on *PP  of triangle ABC, 
(i) [ ] 2T TΔ Δ≅ −I , [ ]T Δ ≅B [ ]TP Δ , [ ]T � �p 0� � 2oT � , [ ]T TΔ Δ≅i , and 2[ ] 3( )T T oT oTΔ Δ Δ Δ= − − +P  

are sceptres; 
(ii) [ ]T ΔP  is a sceptre with main diagonal 3  that of T �  and orthogonal to it, [ ]k T ΔΔ P  3  times 

kT
ΔΔ , 1k =  or 2 , and [ ]o T oTΔ Δ=P ; 

(iii) kT
ΔΔ  reflected about one of its sides is coincident with [ ]k T ΔΔ P , 1k =  or 2—ie, two vertices of 

kT
ΔΔ  are collinear two sides of [ ]k T ΔΔ P . 

Proof. The general case identity cluster is, without loss of generality, * *m a b c d e
mW P� i I P i p B P . 

* *
2 0W W� �  1 2 (2)( 1) 2c d b c b d e v� �� � � � �� e , so vertex loci iL  exist with the same orientations as in 

Lemma 7. The systems of equations for 1L , 2L  are derived and solved as there. The solution is 

1 2 �C C  2( 1) 2 0 ( 1)c e a d b e b e Vvuω ω σ+ + +− +  with midpoint at 1( 1) 2a d a d r+ + +− . This is sufficient to estab-
lish (i) and (ii). (iii) is proved by showing that loci iL  and 1iL +  of 1T

ΔΔ  are concurrent with locus 

iL  of 1 [ ]T ΔΔ P , 3i =  and 4, calculations as in the concurrency proofs above. � 

So B is redundant here and even one application of p annihilates a sceptre. Note that P 
swaps the handedness of a sceptre (Figure 6). Infinite sceptre sequences follow immediately from 
the lemma for any regular hexagon sequence. They can be thought of as the regular structures ly-
ing “between” the hexagons—constructionally, not spatially—created by one or more identity 
operators i applied there. 

Theorem 5. Each infinite regular hexagon sequence Q  on truncation *P  of triangle ABC has a corre-
sponding infinite sceptre sequence ( ) { ( ) : }j jQ Q� �Q Q . In particular, for 0j 	 , 
(i) ( )G  has sceptres parallel g and one another, strongly concentric at 1

3� � , diagonals collinear one 
another and the centroid of ABC, and ( )jG  2 times 1( )jG

�

; 
(ii) ( )H  has sceptres parallel g, diagonal of ( )jH  perpendicular that of 1( )jH

�

 and concentric 
with it, and ( )k jH�  3  times 1( )k jH

�

� ; 
(iii) ( )S  has sceptres parallel g and one another, strongly concentric at 1

3� � , diagonals collinear one 
another and the centroid of ABC, and ( )jS  a 2-3 multiple of 0( )G , to within translation; 

(iv) ( )
�

S  has sceptres parallel g and one another, strongly concentric at 1
3� � , diagonals collinear one 

another and the centroid of ABC, and ( )
j

S
�

 a 2-3 multiple of 1( )H , to within translation; 
(v) ( )A ( ) ( ) ( ) ( ) {0 }

� �

�� 
 
 
 
S s S s  is the disjoint set of all possible sceptres from hex op-
erators on *P  of ABC, to within translation.  

Figures 5-6 show the first two elements of ( )G  (hence ( )S ) and ( )H , two of these re-
markable infinite structures, and the corresponding hexagon sequences. The computer is invalu-
able for graphic study of these complex structures and how they change dynamically with σ. 
Small changes in σ away from the value shown lead to complicated diagrams. The structures in 
the theorem hold, of course, but the generating hexagons become nonconvex and self-
intersecting in irregular ways. Interaction with a diagram that varies with σ allows one to ex-
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perience the sudden appearance, near 1
3� � , of the Figures 4-6 configurations from a chaos of 

lines and then their abrupt disappearance back to an unreadable complexity of lines. 
[Insert Figures 5-6 about here.] 
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FIGURE 1 

First two elements of sequences G (bold) and g (light), hence S and s. 
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FIGURE 2 

First two elements in sequences H (bold) and h (light). 
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FIGURE 3 

First seven elements in sequence S (bold) and first five in Sτ (light). 



v9.20 INFINITE REGULAR HEXAGON SEQUENCES ON A TRIANGLE 13 

 

FIGURE 4 

Identity cluster generating hexagons near 1
3σ = . Sceptre motif at upper left. 
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FIGURE 5 

First two elements of sequence Ψ(G) of equilateral triangle pairs (sceptres) parallel g. 
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FIGURE 6 

First two elements of sequence Ψ(H) of equilateral triangle pairs (sceptres) parallel g. 


