
PPAAIINNTTIINNGG TTUUTTOORRIIAALL NNOOTTEESS

Alvy Ray Smith
Computer Graphics Lab

New York Institute of Technology

SIGGRAPH ‘79
6-10 Aug 1979

Chicago IL

Published as Tutorial Notes at SIGGRAPH ’79, ’80, ’81, and ’82 and Infotech ’79 (London). This
document was reentered by Alvy Ray Smith and his son Sam in Microsoft Word on 12 Sep 2000.
Spelling and punctuation are generally preserved, but trivially minor spelling errors are cor-
rected. Otherwise additions or changes made to the original are noted inside square brackets or
in footnotes.

INTRODUCTION
One of the most basic picture-making tools in computer graphics (specifi-

cally, color raster graphics) is moving or copying an image from one location to
another, from one type of memory device to another type. What we shall call
painting is an example of this basic operation. One image, called the brush, is
copied from disk memory into main and then repeatedly copied from there into
a special type of visible memory called a framebuffer at a changing position de-
termined by the user’s hand on a tablet. All the variations on simple copying
available on a computer are, of course, available for the special case of painting.
We shall detail several of these.

FRAMEBUFFERS
The memory devices of greatest interest in the painting context arre magnetic

disks, main memory, and framebuffers. Only the framebuffer may need to be de-
scribed in some detail. It is a piece of memory large enough to hold one video
frame in digital form. The framebuffer contents can be viewed on an RGB (red,
green, blue) monitor thirty times a second—ie, at video rate. Thus a frame-
buffer—also called a frame store, or a picture memory—is ordinary digital mem-
ory with the addition of circuitry to allow us to see its contents as a 2-
dimensional display. Standard US video displays 480-486 lines. Comparable
resolution in the horizontal direction dictates that a framebuffer contain ap-
proximately one-quarter million picture elements, called pixels. However, there
are framebuffers of lower resolution available to the home hobbyist—eg, 64x64,
128x128, and 256x256. Hopefully there will be framebuffers of much higher reso-
lution available soon—eg, 1000x1000 or 2000x2000. Some optional features a
framebuffer may possess are hardware cursors, extra bit planes for graphic over-
lays, a colormap, video magnification, and programmable special purpose proc-
essors. Some of these—in particular, cursors and colormaps—are so important
that they can be considered mandatory.

Painting Tutorial Notes 2

CURSORING
A person paints into a framebuffer under tablet control. Physically this

means that he moves his hand about on a tablet while looking at a video monitor.
To avoid looking at his hands, he must have an indicator of his tablet position on
the monitor screen. One way to accomplish this is software: The point coordi-
nates of the stylus he moves about on the tablet are sent continually to the cpu. A
routine there writes a mark into the framebuffer so it appears on the monitor
screen in a position corresponding to his tablet position. This mark, called a cur-
sor, must be easily visible and must not destroy the framebuffer contents where
it is written.

Displaying the cursor is a time-consuming, cycle-eating process. Hence it is
convenient to have a hardware cursor built into the framebuffer. The shape of the
cursor is user-defined. Its display is performed by hardware which manages to
preserve the framebuffer contents under the cursor in one of several ways. It may
bitwise complement the framebuffer contents and then complement again before
moving to a new position. Or it may be generated in a separate memory and
mixed into the video at the appropriate position. If it is not a complementing cur-
sor, then its color may be user-selected to keep it from disappearing on certain
backgrounds.

The most popular cursor shape at NYIT is an upturned arrow. The pixel at its
tip is the current location of the stylus on the tablet. Other cursors typically seen
are X’s, +’s, or O’s, centered on the current position, but any convenient shape
will do. Typical hardware cursors permit easy redefinition of the cursor shape as
well as on/off control (turn cursoring on/turn it off).

For software cursoring, it is convenient to have the framebuffer tell the user
when the video vertical blanking occurs. (Every thirtieth of a second, a video
monitor inhibits its electron guns while they are repositioned to the top of the
tube in preparation for the next downscan. This is the vertical blanking interval.)
The cursor can be written during this blanking so as to appear solid on the dis-
play. If it is not synchronized with the video, it will beat against the video fre-
quency and seem to ripple, or completely disappear in some positions.

COLORMAPS
So far we have not discussed the depth of a framebuffer—the number of bits

per pixel—nor how the contents of a framebuffer memory are converted to a
video signal by the video processor of the framebuffer. Although home-hobbyist
framebuffers exist with 1, 2, and 4 bits per pixel, the framebuffer is not a truly po-
tent tool with less than 8 bits per pixel. This is because a human can normally
distinguish between 128 and 256 levels of one color. So with 8 bits a smooth-
shaded monochrome picture can be produced. It can be shown [1] that 16 bits per
pixel suffice for full color pictures intended for standard US video broadcast. For
full color RGB monitors, 24 bits are typically used. For sophisticated applications
at NYIT, 32-bit framebuffers are used—8 bits each for R, G, and B plus additional
8 bits for matting.

In all cases, the video processor must convert the number stored in a pixel
into a set of three voltages for the driving the guns of its video monitor. The as-

Painting Tutorial Notes 3

signment, or mapping, of numbers to voltages could be hardwired into the
framebuffer but usually it is specified by a table which the user may change un-
der program control. This table is called a colormap, or some related name. So
thirty times a second, the video processor scans through the framebuffer mem-
ory. At every pixel it reads the number stored there and uses it as an index into
the colormap. The set of three numbers stored for the table in that index are the
RGB gun settings. At NYIT we have two types of colormap for 8-bit frame-
buffers. Thus both have 256 entries, where each entry consists of three numbers.
In one case, each of the three numbers is 12 bits longs; 8 bits in the other. These
are described as 8 bits in/12 bits out or 8 bits in/8 bits out, respectively. The 12-
bit-out colormaps are useful for color compensation when final output is film in-
stead of video. Typically a colormap is changed during vertical blanking so as to
appear to be an instantaneous change of color.

COPYING IMAGES
As stated in the introduction, copying images from memory to memory is a

basic picture synthesis tool of color computer graphics. For frame-
buffer/minicomputer combinations, this is usually in the form of copying a pic-
ture in a framebuffer to a disk file (called saving the picture) or copying a disk
file to a framebuffer (called restoring the picture). Another common copying in-
stance is from one framebuffer to another. For very small pictures or for cpu’s
with large address spaces, we might speak of copying from framebuffer to main
memory or from disk to main memory as well. (In fact, for very large address
spaces, we can speak of virtual framebuffers.)

We usually don’t move a big block of data from one place to another without
doing something to it. For example, we might lerp—also spelled lirp—one pic-
ture being restored from disk file to the picture already in a framebuffer. Lerp is
short for “linear interpolation”, that very common computer graphics function
given by

LERP(alpha, A, B) = alpha * A + (l - alpha) * B
where alpha is between 0.0 and 1.0. For a given alpha, the lerp of two pictures is
a mixture of both of them. By varying alpha from 0.0 to 1.0, one can obtain a
cross-dissolve from one picture to the other.

For another example, a third picture may be used to control the combination
of two others. If this control picture consists of only two values—say 0 and 1—it
can be used as a mask. A pixel in picture A replaces the corresponding pixel in
picture B only where the corresponding pixel of picture C is 1. If picture C has
many values, say 256, then each of its pixels may be interpreted as an alpha for
the pixel-by-pixel lerp of picture A to picture B. This is called matting, or picture
C is a matte.

PAINTING
Painting may be considered to be a tablet-controlled copying of an image

from one memory device to another. Thus all the variations of this basic opera-
tion, some of which were described above, apply to painting as well. The sim-
plest form of painting then is a straight copy of a small picture called the brush,

Painting Tutorial Notes 4

from main memory to the position in a framebuffer specified by a user with a
tablet. This type of “painting” is called picture or rubberstamping. It becomes
useful with the introduction of the notion of transparency. One value in the
brush is designated transparent which means that it is not written to the frame-
buffer but its position is skipped over instead. Picture painting is useful for creat-
ing textures. For example, a brush which is several blades of grass on a transpar-
ent background can be used to paint a lawn or meadow.

The type of painting from which “painting” derives its name is the following
simulation of what we normally think of as painting in the real world: The brush
is thought of as a mask. Its transparent value, if it has one, is 0, say, and all other
values are thought of as 1’s. Then it is used, under tablet-controlled placement, to
mask picture A into the picture already in the framebuffer, picture B, where pic-
ture A has all pixels of the same color. Equivalently, the user selects a color
which is written into the framebuffer everywhere the corresponding brush pixel
is not transparent.

There are many, many variations on the basic painting modes described
above. Some of these are described in [2], so we refer the reader to this paper and
proceed to describe one last important component of a basic paint program, the
selection of colors. We also refer the reader to the same paper for details of a full-
fledged paint program. This would include many other features than those dis-
cussed here: filling, magnification, saving and restoring pictures, making
brushes, making colormaps, histories, drafting aids, etc.

PALETTES
The mode of painting which emulates real-world painting requires the user

to select a color with which to paint. A convenient way to do this is provided by
the display of a palette. For example, in an 8-bit framebuffer, the palette might be
a 16x16 array of all 256 pixel values. At NYIT the typical palette is 4 rows of 64
small squares each, arranged in order of increasing pixel value, left to right then
top to bottom. The palette may be constantly displayed on the screen or caused
to appear only when necessary, temporarily overwriting the framebuffer con-
tents. The user may be forced to select the color from anywhere in the frame-
buffer, including the palette. At NYIT, the philosophy has been to use a disap-
pearing palette so as not to destroy the balance or composition of the displayed
artwork, and the user is allowed to pick color from anywhere.

For deep framebuffers—eg, 24 bits per pixel—display of all possible colors
on a palette is impossible. So a palette is used to display some convenient subset
of the colors, say 256 of them. The user may change the selection of these colors
at will.

REFERENCES
1. Alvy Ray Smith, YIQ vs RGB, NYIT Tech Memo 9, 2 Apr 1979.

2. Alvy Ray Smith, Paint, NYIT Tech Memo 7, 20 Jul 1978.

