THE PROBABLE GENETIC SIGNATURE OF THOMAS¹ RIGGS, IMMIGRANT TO GLOUCESTER, MASSACHUSETTS, BY 1658

Alvy Ray Smith*

Genetic genealogy provides a powerful tool for easily and convincingly establishing the existence of family memberships. Once the genetic signature of an ancestor is established, a simple numeric matching test determines if a candidate is a genetic descendant of the ancestor. One can then launch an attack on the more difficult problem of determining the actual descent from the ancestor using classic genealogy with a confidence heightened by knowledge that such a descent must exist. Thus the first problem is determining the genetic signature of the ancestor.

This paper presents a methodology for establishing the genetic signatures of the founding immigrants (or any ancestor), using as exemplar Thomas¹ Riggs, who was born in Lancashire in 1633 and had removed by 1658 to Gloucester, Massachusetts. His genetic signature is formally established on 67 markers.

GENETIC GENEALOGY REVIEW

Genetic genealogy is based on the simple facts that a father passes his Y-chromosome DNA (YDNA) unchanged (except perhaps for one or more mutations) to his sons, and a mother passes her mitochondrial DNA (mtDNA) to her children of both genders but only daughters pass it on. So YDNA is passed down the male line and mtDNA down the female line (with perhaps a male at the end of the line). Here we are concerned only with YDNA and unbroken lines of male descent. Briefly, a living Riggs male carries the same YDNA as all his male Riggs ancestors (to within minor modifications due to occasional mutations).

The YDNA is a single, very lengthy molecule composed of tens of millions of chemical units called nucleotides (A, C, G, or T).¹ DNA technology lets us look at specific positions, called markers, on this long stretch of DNA. Typically a marker is a short tandem repeat (STR), a short sequence of nucleotides repeated numerously. For example, the first number in the genetic signature of Thomas¹ Riggs is shown here to be 12, meaning that the short nucleotide sequence AGAT was repeated 12 times in succession (tandem) at a particular location on Thomas’s Y chromosome. The number (e.g., 12) is the marker’s repeat count, often called its value here. Thus with a 67-marker test, the lengths of 67 different STRs are examined, and a string of 67 numbers is returned, being the repeat counts of the

* The author acknowledges the help of Robert Charles Anderson, FASG, and Prof. Bruce Walsh, University of Arizona, with methodology; James Dempsey, Barbara Lambert, and Bonnie J. Riggs for Riggs records; Alison Gopnik for presentation; the eight DNA contributors, and John Cardinal.

¹ For the four chemical units adenine, cytosine, guanine, and thymine from which DNA is constructed. The chemistry is immaterial to genealogy.
respective STRs. It is this string of numbers which constitutes a (genetic) signature (also called a haplotype).

A genetic signature is usually obtained from a cheek swab of a contributor’s mouth. The swab is processed by a special laboratory that returns to the contributor a string of numbers comprising his signature. For genealogical purposes, only the repeat counts matter and the order in which they appear, the exact nucleotides repeated in STRs being unimportant. The ordering used is that defined by FamilyTreeDNA, which provided and processed the swabs for all tests reported.\(^2\) Only 67-marker tests were employed here, unless otherwise indicated.

A mutation of an STR manifests as a change in repeat count by \(\pm 1\) typically.\(^3\) A mutation in a single marker is a rare event, occurring at an average rate of roughly once every 250 generations. Two signatures on 67 markers are considered a match by FamilyTreeDNA if at least 64 of the repeat counts match (64/67), meaning that the two persons with high probability had a most recent common ancestor (MRCA) within genealogical time (i.e., several hundred years).\(^4\)

Method

The basic method employed can be described as pushing each marker value “up the descent tree” from living descendants, whose genetic signatures are known, toward the ancestor stopping at each branch point where a simple mutation-minimizing probability argument is applied to decide the value of the marker to be passed on up the tree. The algorithm is presented via a small example.

Suppose Thomas\(^1\) Riggs had two sons Thomas\(^2\) and John\(^2\). Suppose that Thomas\(^2\) had sons Moses\(^3\) and Aaron\(^3\), and John\(^2\) had son Jeremiah\(^3\). Assume the simplest case of a genetic signature consisting of only one marker. Suppose that the DNA of each of the three grandsons was sent for testing, and the results (the repeat counts, or values, for the one marker) were 12, 13, 13 for Moses\(^3\), Aaron\(^3\), and Jeremiah\(^3\), respectively. The problem is to determine the value of the marker that the ancestor Thomas\(^1\) must have had, assuming his DNA is not accessible.\(^5\)

The value of the marker for Thomas\(^2\) is uncertain (but only to within \(\pm 1\)). Since one of his sons tested to 12 and the other to 13, Thomas\(^2\) himself must have had one or the other.\(^6\) With the given data, we cannot further determine the signature of Thomas\(^2\) on the one marker. We have pushed 12 for Moses\(^3\) and 13 for Aaron\(^3\) up the tree to the branch point occupied by Thomas\(^2\) and determined

\(^3\) Larger changes happen, but rarely. This paper contains only mutations by \(\pm 1\).

\(^4\) FamilyTreeDNA computes the probability of a MRCA within 4 generations at about 90% for a 67/67 match, within 5 generations at about 95%, and within 8 generations at about 99%. This is to be compared to about 12, 14, and 18 generations, respectively, for a 64/67 match. The actual number of generations can vary slightly from these, but these are indicative. For 37 markers (the next smaller test offered by FamilyTreeDNA), a match is considered to be 35/37 or better. That these are not fixed rules will be demonstrated.

\(^5\) The family structure is accurate, but the marker values are fictitious.

\(^6\) There is a rare possibility that he had neither, that there was an independent mutation at the procreation of each son.
that the value of the marker for Thomas2 was most likely 12 or 13, but cannot further choose between the two values the one that was the mutation. This uncertain value is represented by the “value” 12 or 13. This local uncertainty does not imply that the signature of Thomas1 is undetermined, as is shown next.

The signature of John2 is assumed simply to be that of his son. Here we have pushed 13 for Jeremiah3 up the tree to the point occupied by John2 and determined that John2 (most likely) had 13 for the repeat count of the marker.

The signature for Thomas1 is determined as follows: Since Thomas2 must have had 12 or 13 at the one marker, and since John2 must have had 13 there, then Thomas1 (most likely) had 13 there by the argument that two 13s and a single mutation to 12 is more likely than one 12 and two independent mutations—in the same direction (+1)—to two 13s.

Suppose instead that Aaron3 tested to 12 on the marker. Then Thomas2 would have value 12 at that marker because both sons tested to 12.[7] Hence Thomas3 would have value 12 (pushed up from Thomas2) or 13 (pushed up from John2). That is, the value of the marker for Thomas1 would be uncertain, but the uncertainty is only between the two values.

The following two rules capture the operations at each point in a descent tree, working from the descendants toward the ancestor, as in the examples above:[8]

1. A father with only one son (no branching) is assumed to have the same marker value as his son. If the son’s marker value is (un)certain, then so is the father’s.

2. A father at a branch point is assumed to have the value derived from the values of his sons that minimizes mutation probabilities. If this is (un)certain, then the father’s value is (un)certain.[9]

Repeated application of these rules for all 67 markers of actual DNA contributors’ signatures pushed up through the descent tree of Thomas1 Riggs will yield the probable genetic signature for him. The “probable” is required because of the off-chance that Mother Nature chose the more unlikely events.[10]

In this paper the genetic signature of Thomas1 Riggs is established on 65 markers with the remaining two markers established to within two values each, differing by only 1 in both cases. The uncertain markers serve to distinguish subfamilies of Thomas1 Riggs, a positive contribution of mutations.

7 Strictly speaking, he might have had two mutations that were exactly the same at the procreation of his two sons, but both mutations being the same would be even more unexpected (i.e., improbable) than that there were two mutations, itself a rare event.

8 The method used here is called the method of maximum parsimony (fewest number of mutations required to explain a change) [Joseph Felsenstein, \textit{Inferring Phylogenies} (Sunderland, Mass.: Sinauer Associates, 2004), 1–9].

9 All branching nodes in this paper have only two sons, but rule 2 is worded to handle two or more. If an uncertainty has three possible values, say, then the uncertain value would be 11 or 12 or 13, for example, and so forth for even more sons.

10 Or that one or more of the rare mutation events described in the preceding notes did actually occur. Also in the class of rare possibilities considered unlikely here is a marker that mutated one direction, then mutated back the other direction to its original value. The title’s “probable” is dropped henceforth but should be remembered for all these reasons.
Specifically, the following descents are established using classic genealogy. Under each person’s lineage list is his YDNA test result on 67 (or 37) markers, using the code a = 1, b = 2, . . . , z = 26, A = 27, B = 28, . . . , Z = 52 for repeat counts to save space. Doubly underlined letters mark departures of an individual’s signature from the Thomas 1 Riggs signature established in the final section:

A Riggs (Leonard Emery 9, William Wyman 8, George W. 7, Elias G. 6, Gowen 5, Aaron 4, Moses 3, Thomas 2-1):

B Riggs (Francis Porter 8, Fitz B. 7, Aaron 6, Joshua 5, Aaron 4-3, Thomas 2-1):

C Riggs (Don Albert 10, Albert Smith 9, Robert Ensign 8, Azial Litchfield 7, Amasa 6, John 5-4, Jonathan 3, John 2, Thomas 1):

The first two contributors are descendants of Thomas 2 Riggs, their MRCA. Since the last contributor is a descendant of John 2 Riggs, the MRCA of all three was Thomas 1 Riggs, so it is his genetic signature that is derived here.

Register format is used for proofs of the descents, stripped to the bare essentials, and falling short of a full genealogy by any measure. Only the sons necessary for the descents are listed. Death records are usually omitted. In cases of multiple wives, only those are presented who are mothers relevant to the descents being proved, and few details of them are provided, just enough to assist in proving father-son descent in this strictly male-line analysis. Statements of parentage have been omitted since the sources cited vary, for instance, as to whether mothers are named, either with or without maiden names.

PROOFS OF DESCENT

1. THOMAS 1 RIGGS was probably born in March 1632/3, baptized shortly thereafter in Hawkshead, Lancashire, England, 25 March 1633. He died in Gloucester, Massachusetts, 26 February 1721/2, aged about 90 years. He married in Gloucester 7 June 1658, MARY MILLETT. The first volume of Gloucester town records contains this property transaction: “[1704] Thomas Riggs sen[rior] claimed 5 common rights 1 he have son Tho Riggs 1 to son John Riggs 1 to son in Law Nathanael Wharff 2 reserve [p. 285].”

Sons (this line omitted hereafter):

2 i. THOMAS 2 RIGGS, b. Gloucester 7 Dec. 1666.

11 It will be shown that no information is lost in this particular study using only 37 markers.
12 Name, dates, and mother’s maiden name of living persons are suppressed, but reviewers had full data.

2. **THOMAS RIGGS** (Thomas¹) was born in Gloucester 7 December 1666, son of Thomas and Mary, and married **ANN WHEELER**.[15] Thomas’s will mentions “my two Sons Aaron and Joshua Riggs” and “the heirs of my son Moses Riggs decd.”[16]

3. **JOHN RIGGS** (Thomas¹) was born in Gloucester 25 February 1669/70, and married **RUTH WHEELER**.[17]

4. **MOSES RIGGS** (Thomas²–¹) was born in Gloucester 31 March 1698, and married **MERCY GOWEN**.[18]

7. i. **AARON RIGGS**, b. say 1735.

5. **AARON RIGGS** (Thomas²–¹) was born at Gloucester 18 January 1700/1, and married **ANNA RIGGS**.[19]

6. **JONATHAN RIGGS** (John², Thomas¹) was born at Gloucester 20 December 1700, and married **SARAH PHIPPS**.[20]

7. **AARON RIGGS** (Moses³, Thomas²–¹) born say 1735[21] was probably the aged Aaron Riggs who died at the workhouse in Gloucester 26 August 1811.[22] He married **RACHEL** —, who was born about 1737, and died at the same workhouse 7 March 1813, aged about 75.[23] That Aaron⁴ was son of Moses³ Riggs is based onomastically on his naming two of his children Mercy and Gowen, the first and last names of the wife of Moses³, surely his mother.[24] Furthermore, her maiden

[17] Ibid., 1:582, 2:455.

[18] Ibid., 1:577, 2:452. Anna was Aaron’s cousin.

[21] Moses and Mercy Riggs had four children born or baptized in 1727, 1729, 1731, and 1733 (ibid., 1:580–82, 584).

[24] Ibid., 1:580, 582.
surname Gowen was common in the descent through son Gowen\(^5\) and nowhere else in the extensive family of Thomas\(^1\) Riggs.\(^{[25]}\)

10 i. **GOWEN\(^5\) RIGGS**, b. Gloucester 5 Sept. 1756.

8. **AARON\(^4\) RIGGS** (*Aaron\(^3\), Thomas\(^2\–1\)*) was born in Gloucester 18 March 1749/50, and married **MARTHA ADAMS**.\(^{[26]}\)

11 i. **JOSHUA\(^5\) RIGGS**, b. Gloucester 22 March 1785.

9. **JOHN\(^4\) RIGGS** (*Jonathan\(^3\), John\(^2\), Thomas\(^1\)*) was born in Gloucester 6 May 1749, son of Jonathan and Sarah (Phipps),\(^{[27]}\) and married **SARAH WOODARD**.\(^{[28]}\)

10. **GOWEN\(^5\) RIGGS** (*Aaron\(^4\), Moses\(^3\), Thomas\(^2\–1\)*) was born at Gloucester 5 September 1756,\(^{[29]}\) and married **ELIZABETH GOVE**.\(^{[30]}\) Widow Elizabeth Riggs was appointed guardian of the minor children of Gowen Riggs on 8 January 1806, including Elias, over 14.\(^{[31]}\)

13 i. **ELIAS G.\(^6\) RIGGS**, b. Edgecomb 27 July 1790.

11. **JOSHUA\(^5\) RIGGS** (*Aaron\(^4\–3\), Thomas\(^2\–1\)*) was born in Gloucester 22 March 1785, and married **THOMAZINE/TAMMY GROVER**.\(^{[32]}\)

14 i. **AARON\(^6\) RIGGS**, b. Gloucester Sept. 1818.

12. **JOHN\(^5\) RIGGS** (*John\(^4\), Jonathan\(^3\), John\(^2\), Thomas\(^1\)*) was born in Attleborough, Massachusetts, 2 January 1772,\(^{[33]}\) and married **SARAH SHURTLEFF**.\(^{[34]}\)

13. **ELIAS G.\(^6\) RIGGS** (*Gowen\(^5\), Aaron\(^4\), Moses\(^3\), Thomas\(^2\–1\)*) was born in Edgecomb, Maine, 27 July 1790.\(^{[35]}\)

\(^{25}\) Based on a scholarly genealogy of the Thomas\(^1\) Riggs family of 552 pages and 10 generations: Alvy Ray Smith, *Thomas Riggs (1633–1722) of Gloucester, Massachusetts, and His Descendants to 2006*, at alvyray.com/Riggs/vol5/ThomasRiggs5_v5.2.pdf, electronically published 21 December 2009.

\(^{26}\) Vital Records of Gloucester [note 15], 1:578, 2:452.

\(^{27}\) Ibid., 1:581; Bristol County, Mass., Probate Records, 126:218, 324.

\(^{28}\) Vital Records of Attleborough, Massachusetts, to the end of the year 1849 (Salem, Mass.: The Essex Institute, 1934), 538.

\(^{29}\) Vital Records of Gloucester [note 15], 1:580.

\(^{30}\) Edgecomb, Maine, Town and Vital Records, 249 [FHL 0,010,845].

\(^{31}\) Lincoln County, Maine, Probate Records, 9:262.

\(^{33}\) Vital Records of Attleborough [note 28], 219.

\(^{34}\) Vital Records of Montgomery, Massachusetts, to the year 1850 (Boston: NEHGS, 1902), 51.

\(^{35}\) Greenbush, Maine, Family Records [FHL 0,010,924, item 1], family of Elias G. Riggs.
In 1830 Elias “Rigs,” 40–50, resided in Sunkhaze, Maine, with children including exactly one male under 5.\footnote{1830 U.S. Census, Sunkhaze, Penobscot County, Maine, roll 51, p. 485.} In 1840 Elias Riggs, 40–50, resided in Greenbush, Maine, with children including exactly one male 10–15.\footnote{1840 U.S. Census, Greenbush, Penobscot County, Maine, roll 149, p. 163.} In 1850 Elias G. Riggs, 59, born in Maine, resided in Greenbush with George W., 21, born in Maine.\footnote{1850 U.S. Census, Greenbush, Penobscot County, Maine, roll 266, p. 276.}

16 i. GEORGE W.7 RIGGS, b. Bangor, Maine, 16 July 1828.

14. AARON6 RIGGS (Joshua5, Aaron4–3, Thomas2–1) was born in Gloucester September 1818, and married LEONORA AMANDA SEAVEY.\footnote{Vital Records of Gloucester [note 15], 1:578, 2:452.}

17 i. FITZ B.7 RIGGS, b. Gloucester 16 June 1855.

15. AMASA6 RIGGS (John5–4, Jonathan3, John2, Thomas1) was born in Montgomery, Massachusetts, 9 October 1797,\footnote{Vital Records of Montgomery [note 34], 28.} and married MARVILLA LITCHFIELD.\footnote{Westfield, Hampden County, Mass., Births, Marriages and Deaths, D:119 [FHL 0,185,474].}

18 i. [A]ZIAL LITCHFIELD7 RIGGS, b. Mass. 4 Nov. 1824.

16. GEORGE W.7 RIGGS (Elias G.6, Gowen5, Aaron4, Moses3, Thomas2–1) was born in Bangor, Maine, 16 July 1828, and married LOUISA PRATT.\footnote{Greenbush Family Records [note 35], families of Elias G. Riggs, George W. Riggs, and Herriminn Pratt.}

In 1860 George W. Riggs, 31, born in Maine, resided in Greenbush, Maine, with Louisa, 24, and four children including William W., 4, born in Maine. In an adjacent dwelling was Elias G. Riggs, 69, born in Maine.\footnote{1860 U.S. Census, Greenbush, Penobscot County, Maine, roll 445, “Page No. 29.”}

19 i. WILLIAM WYMAN8 RIGGS, b. Greenbush 3 May 1855.

17. FITZ B.7 RIGGS (Aaron6, Joshua5, Aaron4–3, Thomas2–1) was born in Gloucester 16 June 1855,\footnote{Massachusetts Vital Records from 1841, 90:166.} and married ADA P. SWIM.\footnote{Massachusetts Vital Records from 1841, Gloucester Marriages, 307:172.}

In 1900 Fitz B. Riggs, born July 1855 in Massachusetts, resided in Gloucester with his wife of 20 years, Ada P., and three children including “Frances” P., 11, born January 1889 in Massachusetts.\footnote{1900 U.S. Census, Gloucester, Essex County, Massachusetts, roll 641, p. 239, sheet 24B.}

20 i. FRANCIS PORTER8 RIGGS, b. Gloucester 31 Jan. 1889.

18. [A]ZIAL LITCHFIELD7 RIGGS (Amasa6, John5–4, Jonathan3, John2, Thomas1) was born in Massachusetts 4 November 1824,\footnote{Vital Records of Gloucester [note 34], 28.} and married EMELINE EUGENE KNOX.\footnote{Greenbush Family Records [note 35], families of Elias G. Riggs, George W. Riggs, and Herriminn Pratt.}
21 i. ROBERT ENSIGN 8 RIGGS, b. Mass. 21 Sept. 1851.

19. WILLIAM WYMAN 8 RIGGS (George W. 7, Elias G. 6, Gowen 5, Aaron 4, Moses 3, Thomas 2–1) was born in Greenbush, Maine, 3 May 1855,49 and was buried at Kingfield, Maine, next to his wives and sons, including Leonard Emery.50 William married MARY ELIZABETH STREETER.51

22. LEONARD EMERY 9 RIGGS (William Wyman 8, George W. 7, Elias G. 6, Gowen 5, Aaron 4, Moses 3, Thomas 2–1) was born in Maine 13 February 1899,54 and married MARGERY — [wife’s maiden name suppressed].

 i. B 9 RIGGS [living].

21. ROBERT ENSIGN 8 RIGGS (Azial Litchfield 7, Amasa 6, John 5–4, Jonathan 3, John 2, Thomas 1) was born in Massachusetts 21 September 1851, and died at Teton, Fremont County, Idaho, 9 November 1933. He married AGNES SMITH.53

22. LEONARD EMERY 9 RIGGS (William Wyman 8, George W. 7, Elias G. 6, Gowen 5, Aaron 4, Moses 3, Thomas 2–1) was born in Maine 13 February 1899,54 and married LOUISA —.55

 i. A 10 RIGGS [living].

23. ALBERT SMITH 9 RIGGS (Robert Ensign 8, Zial Litchfield 7, Amasa 6, John 5–4, Jonathan 3, John 2, Thomas 1) was born in Idaho 1 January 1890, and died at Teton, Idaho, 19 August 1949. He married IRIS NANCY SIMPSON.56

47 Utah Cemetery Inventory, on Ancestry.com (all accesses to Ancestry.com made 22 April 2009), Zial Litchfield Riggs; Windows of Wellsville, 1856–1984 (Providence, Utah: Wellsville History Committee, 1985), 662, Azial Riggs.

48 Granby, Hartford County, Conn., Town Records [FHL 1,317,454, item 3], 1:48.

49 Greenbush Family Records [note 35], in list titled “George W. Riggs and family.”

51 Maine Marriages, 1892–1996, on Ancestry.com [FHL 0,010,357, by bride].

52 Massachusetts Vital Records from 1841, Births, 394:248.

54 World War I Draft Registration Cards, 1917–1918, on Ancestry.com [citing FHL 1,653,907], Leonard Emery Riggs, nearest relative Elizabeth Mary [sic] Riggs.

55 Information provided by a living person; source suppressed.
24. DON ALBERT RIGGS (Albert Smith, Robert Ensign, Zial Litchfield, Amasa, John, Jonathan, John, Thomas) was born in Idaho 10 April 1920. He died 5 June 1976 and was buried in Teton. [57] [Wife’s name suppressed].

i. C RIGGS [living].

GENETIC SIGNATURE OF THOMAS RIGGS

To simplify the derivation of the signature of Thomas Riggs, notice that all three signatures of the contributors agree at 32 of the first 37 markers. The rightmost 30 markers of the two 67-marker signatures are identical, so it is safe to assume that the one 37-marker signature would probably also match on these 30 markers. [58]

Because of an anomaly in the testing process, the four markers 22-25 often must be reordered for maximum matching. [59] Thus values oopq for these markers from contributor B are (minimally) rearranged to opoq for maximum matching with A’s and C’s opqq. Therefore Thomas’s signature is already determined at 63 of 67 markers (a comma represents an initially undetermined marker):

\[
\text{l x n k n p l, m m C s i j k k y o s C o p, q k j s w o o, r K L , l k i o p h j h j l u w p j l l o h l w t m l k m k k l l.}
\]

So a contributor’s signature will be represented at the four problematic markers only, at locations 9, 24, 32, and 36, respectively, as shown here:

A: k q q l
B: l o q l
C: l q r m

Consider marker 9. Apply rule 1 from the method section to push the k up the descent tree from the living descendant A to Moses, and the l up the tree from B to Aaron, sons of the MRCA of A and B, Thomas. Apply rule 2 to Thomas to determine that marker 9 most likely had value \{kl\} (read “k or l”) for him.

Use rule 1 to push the l from C up the tree to John. Then apply rule 2 to Thomas to determine that marker 9 most likely had value l in his signature. Given a \{kl\} from Thomas and an l from John, the logic of maximum parsimony

56 Records of Persons Buried in the Teton-Newdale Cemetery [note 53], 52.
57 Ibid.
58 This claim is strongly supported by five additional signatures subsequently presented.
59 These four markers (officially DYS 464a, b, c, and d) are always reported in order of increasing value, not in the fixed order assumed by the algorithm here. Accepted practice for comparing them between contributors is to reorder them for maximum pairwise marker matches, in as few steps as possible, and so that the final result for them from the algorithm is in order of increasing value.
argues for only one mutation, l to k, rather than two independent mutations (in the same direction yet).

Repeat the above algorithm for the other three problematic markers to get this sequence of values in location order: \(lq\{qr\}\{lm\}, \) where the value \(\{qr\}, \) for example, means that the data is insufficient for deciding between values \(q \) or \(r. \)

Reinserting these four values yields the following 67-marker signature as that most likely to have been the genetic signature of the immigrant Thomas\(^1\) Riggs:

\[
\text{lxnknpllmCsijkk}yosCoppqkJswooq\{qr\}rK\{lm\}lkiophijjjluwpjllohlwtmklmkkll.
\]

Let this signature be formally known as the “Thomas\(^1\) Riggs modal signature,” where it is noted that the curly braces at markers 32 and 36 indicate uncertainties as to which value Thomas\(^1\) must have had at those locations. A follow-on paper proves that they resolve to \(q \) and \(l, \) respectively.\(^{60}\)

As a measure of robustness of the derived signature, consider the following five proved descents, the proofs of which are omitted for brevity:

D Riggs (Arthur Norton\(^9\)-\(^8), John Gowen\(^7\), Gowen\(^6\)-\(^5), Aaron\(^4\), Moses\(^3\), Thomas\(^2\)-\(^1\)):
\[
\text{lxnlpillmmCsijkk}yosCoppqkJswooqrlK\{llkio}pphijjjluwpjllohlwtmklmkkll
\]

E Riggs (Homer Chase\(^9\), Daniel Burnham\(^8\), Solomon A.\(^7\), Asa\(^6\), Aaron\(^5\)-\(^4\), Moses\(^3\), Thomas\(^2\)-\(^3\)):
\[
\text{lxnknpllmCtijkk}yosCoppqkJswooqrL\{llkio}pphijjjluwpjllohlwtmklmkkll
\]

F Riggs (John Edward\(^9\)-\(^8\), George B.\(^7\), John\(^6\)-\(^5\), Aaron\(^4\)-\(^3\), Thomas\(^2\)-\(^1\)):
\[
\text{lxnknpllmCsjijkk}yosCoppqkJswooqgL\{llkio}pphijjjluwpjllohlwtmklmkkll
\]

G Riggs (Ursel\(^8\), Robert Ensign\(^8\), Azial Litchfield\(^7\), Amasa\(^6\), John\(^5\)-\(^4\), Jonathan\(^3\), John\(^2\), Thomas\(^1\)):
\[
\text{lxnknpllmCtijjkk}yosCoppqkJswooqrK\{llkio}pphijjjluwpjllohlwtmklmkkll
\]

H Riggs (Burns Broadbent\(^10\), John Ensign\(^9\), Brigham Adelbert\(^8\), John Ensign\(^7\), Amasa\(^6\), John\(^5\)-\(^4\), Jonathan\(^3\), John\(^2\), Thomas\(^1\)):
\[
\text{lxnknpllmCrijkk}yosCoppqkJswooqrK\{llkio}pphijjjluwpjllohlwtmklmkkll}
\]

These five signatures do not change the derived signature for Thomas\(^1\) Riggs nor do they resolve the two uncertainties. The reader can check that removal of any one of the three contributors A, B, or C from the derivation results in a more uncertain, if not misleading, signature for the immigrant Thomas\(^1\) Riggs.

Alvy Ray Smith (alvy@alvyray.com), cofounder of Pixar Animation Studios, is a Trustee Emeritus of NEHGS. He was awarded the Donald Lines Jacobus Award in 2007 for his book on Bethuel Riggs, published by Newbury Street Press.

\(^{60}\) Alvy Ray Smith, “The Probable Genetic Signature of Edward\(^1\) Riggs, Immigrant to Roxbury in 1633,” \textit{Register} 164(2010):95-103. So mutation values \(r \) and \(m \) on markers 32 and 36 indicate the subfamily of Amasa\(^1\) Riggs.

\(^{61}\) This signature proves to be a 61/67 match to Thomas\(^1\) Riggs, which although unusual demonstrates that a 64/67 or better match is not a definite requirement for descent, just a strong indicator.