Computer Graphics

Volume 18, Number 3 July 1984

PLANTS, FRACTALS, AND FORMAL LANGUAGES
Alvy Ray Smith.

Computer Graphics Project
Computer Division
Lucasfilm Ltd.

ABSTRACT. Although fractal models of natural
phenomena have received much attention recently, there
are other models of complex natural objects which have
been around longer in Computer Imagery but are not
widely known. These are procedural models of plants
and trees. An interesting class of these models is
presented here which handles plant growth, sports an
efficient data representation, and has a high “database
amplification” factor. It is based on an extension of the
well-known formal languages of symbol strings to the
lesser-known formal languages of labeled graphs. It is so
tempting to describe these plant models as “fractal” that
the similarities of this class of models with fractal models
are explored in an attempt at rapprochement. The
models are not fractal so the common parts of fractal
theory and plant theory are abstracted to form a class of
objects, the graftals. This class may prove to be of great
interest to the future of Computer Imagery. Determinism
is shown to provide adequate complexity, whereas ran-
domness is only convenient and often ineflicient. Finally,
a nonfractal, nongraftal family of trees by Bill Reeves is
introduced to emphasize some of the paper’s nongram-
matical themes.

CR CATEGORIES AND SUBJECT DESCRIPTORS:
['43 [Mathematical Logic and Formal
Languages|: Formal Languages - Classes defined by
grammars or automate; 1.3.5 [Computer Graphies|:
Computational Geometry and Object Modeling; 1.3.7
[Computer Graphics]: Three-Dimensional Graphics
and Realism; J.5 [Arts and Humanities|: Arts, fine
and performing.

ADDITIONAL KEY WORDS AND PHRASES: plant,
tree, graftal, fractal, particle system, parallel graph
grammar, L-system, database amplification, Computer
Imagery.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-138-5/84/007/0001 $00.75

INTRODUCTION

Two of the newest contributions to Computer
Imagery are the adaptive, “‘fractal” technique of Fournier,
Fussel, and Carpenter}[7], and the particle systems of
Reeves[19]. Both of these are displayed in the Genesis
Demo|20], the growing mountains realized by fractals and
the fires by a particle system. Another example is the
picture Road to Point Reyes[2], the mountains again being
fractal and the grasses particulate. They are both depar-
tures from traditional computer graphics which takes the
“cubist' approach of constructing models from geometric
primitives, now the domain of CAD/CAM. Compuler
Imagery is used to refer to the newer, more flexible and
subtle state of the art of computed pictures.

A main purpose of this paper is to present another
class of complex renderable objects. Members of this rich
class will be interpreted as plants or trees. The class
shares characteristics with fractals and particle systems;
another purpose of the paper is to make the relationships
clear. The definitions from Benoit Mandelbrot's inspiring
book[14] apparently do not allow the plants presented
here to be deseribed as fractals (see his Chapter 16 in par-
ticular) because the notion of fractal is strongly geometri-
cal and defined only in the limit. What may prove to be
of as much or more interest is structural rather than
geometrical and becomes sufficiently intriguing far below
the limit. This paper is concerned with formal language
techniques, instances of which implicitly underlie many of
Mandelbrot's examples and, as will be shown below, other
Computer Imagery techniques.

The key idea is contained in the nature of formal
languages. The plants presented are words in a formal
language - in particular, a parallel graph grammar[13]
language. These languages are not the well-known Chom-
sky hierarchy[10] languages but the lesser known L-
systems[9,12]. 1t is suggested that the parallel graph
grammar languages - the graftals - have more potential
for Computer Imagery than fractals because they are less
restrictive.

Graftals share with fractals the attribute of *‘the
closer you get, the more it looks the same" when a scaling
geometry is imposed. Fractals have been explored by
investigating the special cases of strict and statistical self-

t But it is the locally adaptive technique of Carpenter which is
emphasized here.

«3SIGGRAPH'84

similarity which permit actual computation of the
Hausdorf-Bescovitch dimension. This is of only limited
usefulness in Computer Imagery. What will be shown to
be more useful is a relaxed “self-similarity” which is an
ability to generate detail preserving the nature of an
object without strictly copying it. This attribute is forced
by the finiteness of a formal grammar. “Fractality” is
thus a special characteristic achieved by only some graf-
tals. Those fractals generated with true random processes
- eg., fractional Brown fractals - are not graftals.
Although the random fractals can be used to generate
beautiful still pictures[l14,23] their computational practi-
cality is yet to be demonstrated, particularly in the con-
text of animated sequences.

An advantage of the graftal approach is its intrinsic
locality. Locality admits adaptive subdivision which has
proved valuable in Computer Imagery for its computa-
tional savings in patch rendering and spline computation.

An implication of the finiteness of grammars is that
randomness is not allowed. Surprisingly, evidence will
support the acceptability of this restriction. In fact, it is
computationally more efficient to avoid random number
generators when objeets as complex as plants are ren-
dered.

In addition to the plant models which are the pri-
mary focus of this paper, several other models are dis-
cussed including two grammars from Mandelbrot, moun-
tains by Carpenter, and particle system trees by Reeves in
order to elucidate the functions of locality, randomness,
and formal grammars in systems designed to generate
complex images from small databases, a property called
dalabase ampli fication.

ALGORITHMIC PLANTS

Lindenmayer[12] introduced the notion of parallel
rewriting grammars for the modeling of developing biolog-
ical systems. The grammars are similar to those of con-
ventional formal language theory[10] except productions
are applied simultaneously, and there is no distinction
between terminal and non-terminal symbols. All strings
generated from an initial string, or axiom, are considered
to be words in the language of the grammar. The axiom
is typically an element of the grammar's alphabet, but
this is not a requirement here. An extensive literature[8]
has developed on these so-called L-systems, particularly
for the context-free subset (the 0L-systems, for zero
neighbors) and for the two simplest context-sensitive sub-
sets (the IL-systems, for a one-symbol, nearest-neighbor
context and the 2L-systems, for the two-symbol, nearest-
neighbors context).

Lindenmayer also introduced the notion of bracketed
L-systems which extend an L-system alphabet by the set
{[,1}. This allows the representation of trees with strings.
The brackets contain branches which are attached at the
symbol just left of the left bracket. A simple example is
the (context-free) OL-system with alphabet {0, 1, [,]},
axiom 0, and production rules
{0—1[0]L[0]0, 1—11, [—[,]—]}. The first three steps
(generations) are 0, 1[0]1[0]o, and
11[1[{0]1[{0]0]11[1[0]1[0]0]1[0]1[0]0. An equivalent graphic
presentation of the system above is presented in Figure

(a) (b)

Figure FREETREE. (a) Production rules. (b) Genera-
tion n = 2.

FREETREE. Notice that affine transformations of the
graphical statements of the rules are required and that
dots are used to show corresponding connections before
and after replacements. Notice also that two kinds of
branching, left and right, have been used rather than just
the one of the string representation. Another set of
bracket symbols could represent this extension; so the
branching rule becomes 0—1[0]1(0)0. Representing diver-
sity with larger alphabets will receive further mention
when the role of randomness is discussed.

The (geometric) trees generated are considered to be
data structure maps, not necessarily the final image. A
postprocessing step, called an interpretation, expands this
map, assumed to have only a finite amount of information
at each node (finite alphabet), into the final image. Thus
all trees structurally equivalent to the data structure tree
under finite interpretation ean be considered to be words
generaled by the grammar. Notice that finite interpreta-
tion does not allow randomness.

Notice also that the string representation of these
plants is quite concise. Any language - e.g., C - which has
character or byte manipulation operators permits easy,
speedy implementation.

Finally, notice that if 7(n) is the n-th generation,
then the (n+1)-th generation can be expressed recursively
in string notation as

T(n+1) = 12" [T(n)1¥"[T(n)] T(n) .

In the terminology of Mandelbrot ([14] pp. 152-3), the tree
is a subfractal (seems like a fractal but isn’t) which is not
sel f-similar but has a residue which corresponds to the
progeny of the 1's in the trunk of generation n=1. In
formal language terminology, the residue is the conse-
quence of another symbol in the alphabet. In the example
above, the production rule for the solid arrow is not very
interesting, so '‘residue” is perhaps appropriate, but in
general its rule could be as interesting as that of any
other symbol.

Plate CARTOON.TREE is a 2-dimensional represen-
tation of the 7Tth generation of this system. Since the
string representation of a plant is referred to as its gene,
or genotype, it follows that the plant is the phenotype of
the string. The phenotype in this example is obtained
from the genotype by representing each 0 or 1 with an
antialiased line segment. At the end of each branch -
thus at each] in the gene - a “leaf"” is drawn which, in
this simple case, is just an antialiased disk.

Gomputer Graphics ~ Volume 18, Number 3 July 1984

The program used, called Gene, gives control over
color of stem and leaf, provides a dropped shadow for
each primitive, does depth darkening, and provides
separate width controls for stems and leaves. It also gen-
erates a 3-dimensional database for full rendering with
hidden surfaces removed; the 2-dimensional versions are
simply speedy sketches and color studies. There is no rea-
son the leaves or stems could not be more complex, but
the simple shapes used so far - lines and disks in 2-D or
cylinders and spheres in 3-D - have yielded surprisingly
pleasing results (Plate WHITE.SANDS). Notice that the
branches get smaller with distance from the root and the
leaves get larger. These attributes are not part of the
grammar but are variations modeling global gravitational,
chemical, or electromagnetic tropisms. They are added
during interpretation of the word generated by the gram-
mar. Kawaguchi[ll] gives many examples of the beauty
which can be obtained at the interpretation step of a sim-
ply generated word.

The program Gene also allows the use of an arbi-
trarily large (or small) finite set of angles or a random set
if so desired. It will be demonstrated that randomness is
not required for pleasing results, but just one angle and
its negative do not suffice, as demonstrated by Plate
CARTOON.TREE. The addition of more complexity in
the form of context is studied next.

Hogeweg and Hesper[9] studied the propagating,
deterministic bracketed 2L-systems, where “propagating”
means there are no erasing rules and “deterministic”
means no lwo distinct rules share the same left side.
With these systems they obtained a wide variety of plant-
like species. Their paper, plus the books of Stevens[22]
and Mandelbrot[14], are the principal inspirations for my
work here. Hogeweg and Hesper were restricted to simple
black-and-white line drawings and only 25 generations
(successive applications of all applicable productions). I
have been able to apply full-color 3-D Computer Imagery
techniques to their results, add flowers and leaves, and
use much deeper generation trees (35-45 generations typi-
cally suffice) to make stills, growth movies, and a holo-
gram.

An example of a bracketed 2L-system has the alpha-
bet {0,1,[,]}, the axiom 1 and the production rules
0.1[1].1.1.0.11.1.0, where the dots separate the images of
the eight binary triples in numeric order, left to right.
Thus 001 maps to 1[1], meaning that wherever a 0 occurs
in a string with a 0 to its left and a 1 to its right, it is
replaced at the next step (generation) with the string 1[1].
There are assumed to be invisible 1's at the unattached
ends of all branches. Only the 0's and 1's are replaced,
the brackets being structural markers only. The left
neighbor of a branch is the 0 or 1 just left of the branch -
e.g., in the string 0[1], the left and right neighbors of the
0 are two invisible 1's and those of the 1 are the 0 and
another invisible 1, respectively. The first 11 generations
of the bracketed 2L-system above are shown in Table 1.
An equivalent description of the system is graphical, Fig-
ure SENSTREE. The left-side symbol to be replaced by
the right side of a rule is surrounded by a dashed box.
All productions not shown leave a symbol unchanged.
From this inauspicious beginning arises - after 35 genera-
tions and less restrictive branching - the plant of Plate

L[n]

1

0

11

00

01[1]

111[0]

000[11)
001[1][10]
01[1]1[0][111]
111[0]0[11][000)
001[11]11[10][001[1])

[T T A R

[=3 =R+ B W=l

[

Table 1. 11
0.1(1).1.1.0.11.1.0.

s r
i — i
Lgd H

generations of the 2L-system

(b)

(a)

Figure SENSTREE. (a) Production rules. (b) Genera-
tion n = 11.

WITH.WITHOUT which shows the same plant, in two
dimensions, with and without flowers to reveal its beauti-
fully intricate branching structure.

By rendering successive generations in successive
frames, a plant's growth can be animated. See Plate
WISP.GROWTH. To ensure coherence between succes-
sive generations, an angle must be “nailed” to its branch
once it has been selected. Plates GARDEN,
GARDEN.DROP and BUSHES demonstrate a variety of
related graftals with and without flowers or leaves. Plates
GREEN.FLAME and VITAPLANTS illustrate applica-
tion of Gene’s controlling parameters.

If a geometry is foreced on a plant grammar, so that a
production rule requires the same space be occupied
before and after replacement, then the grammar has the
property that “the closer you get, the more it looks the
same”. Thus, as we zoom in on a plant generated by
such a grammar, we cause further invoecation of the
replacement rules to generate more detail. This detail
will resemble the overall plant since it is generated by the
same small set of rules. So the plants have a form of
“self-similarity”” which is much looser than that associated
with fraectals.

%// &SIGGRAPH'84

CARPENTER MOUNTAINS

Loren Carpenter has shown that a grammar with the
rule shown in Figure CARPENTER suffices to turn a
database (axiom) of a small set of triangles into a rich
mountain at the 10th generation, more or less. Plate
FOUR.FRACTAL is the 5th generation in a Carpenter
grammar with one triangle as the axiom. Clearly, data-
base amplification is one of the benefits of this grammar.
We have apparently been quite lax in applying the pro-
duction rule of the Carpenter grammar since in no case is
its left side literally (geometrically) satisfied even allowing
affine transformations. Our formal language must allow
topological deformation in the sense that any deformation
required of a left side to make it apply must be applied as
well to the right side before replacement. The rule must
apply to any triangle.

There is a problem with shared edges here. How is
the common edge between two triangles to be replaced
identically as the result of two separate applications of the
production rule, each requiring a different deformation?
There is no way to solve this problem in the style of this
paper if any kind of infinity is involved - for example, if
arbitrary real displacements of the midpoint are allowed.
The usual way the algorithm has been stated has been
with a random number generator determining the dis-
placements. In practice, however, only small tables of
random numbers have been used to avoid the speed sacri-
fice involved in using a random number generator millions
of times. In fact, as Plate FOUR.FRACTAL shows, only
three different numbers suffice for good-looking moun-
tains. If a random number generator is used at all, its
only role is to provide a nice spread to the finite set of
numbers to be used repeatedly. Plate THREE. THISTLE
shows a similar result for graftal plants, the system
0.1.0.1[1].0.11.0.0 in this case.

A small (finite} number of different displacements
with only local effect suggests formal language theory
again. We can expand the one rule in Figure CAR-
PENTER to a finite set of rules corresponding to one lelt
side for every possible triple of symbols, each of which
represents one of the allowed displacement factors. A
midpoint displacement becomes a function of its two
nearest node labels, so shared edges are forced to behave
the same way.

These mountains suffer from a defect known as the
“creasing problem’. The midpoint displacements are in
height only to avoid foldover and self-intersection. Thus
the initial database lines are never broken out of recogni-
tion by the subdivision process, especially if observed
along their initial directions. In formal language terminol-
ogy, as Loren Carpenter has pointed out to me, the prob-
lem with his language is that it is context-free. Informa-
tion internal to an original database triangle is never
passed to neighboring triangles. An open question is
whether a context-sensitive grammar exists for mountains
which avoids the creasing problem. Loren believes so and
has designed a context-sensitive grammar which he is
currently testing. Of course, a context-sensitive neighbor-
hood must be finite (cf. local); it is already known that a
global approach will work[23], but our goal is to find a

AN N

Figure CARPENTER. The production rule for a Car-
penter mountain.

VAN

Figure KOCH. The production rule for a Koch (or
Cesdro) curve.

2

- —

s 5 K g

Figure SIERPINSKI. The production rules for a
Sierpinski arrowhead.

computationally more satisfactory approach. As anyone
can testify who lives near the edge of a tectonic plate,
creases in landscapes are natural. The problem is to bring
them under control.

LANGUAGES IN MANDELBROT'S BOOK

Mandelbrot's book is filled with formal language
examples informally presented. At [irst glance they
appear to be of a very simple kind. An example is the
production rule for the so-called Koch curve shown in Fig-
ure KOCH. If the axiom is an equilateral triangle, then
the first gencration is a Star of David in this language (cf.
[14], p. 42). Arrowheads have been added to the line seg-
ments in the production rules whenever direction is
important.

All of the languages in Mandelbrot use only one sym-
bol in the production rule, a solid line segment, but the
production rules are [requently augmented with non-
grammatieal rules such as “the generatorf must be made
to alternate between the left and the right”. These addi-
tional remarks can be handled entirely by a formal
language if additional symbols are allowed. Figure
SIERPINSKI shows the two production rules on two sym-
bels replacing the one rule on one symbol plus additional
stipulation in [14], p. 142. Directionality is important.
The use of two symbols and arrows readily captures the
notion of swapping from left to right in successive genera-
tions. Of course, in the final interpretation of a word,
arrowheads are removed and dotted lines replaced with
solid lines.

PARALLEL GRAPH GRAMMARS

There are several approaches we might take for
defining the class of languages suggested in the preceding
sections. The class chosen must answer to the following
observations:

{ Mandelbrot calls the axiom an “initiator” and the right-hand
side of a production rule a ‘'generator”.

Computer Graphics ~ Volume 18, Number 3 July 1984

The context-free plant productions require the form
tree-replaces-segment. There must be a way of specifying
connectivity during replacement. Several symbols must
be allowed. Directionality is important. Preservation of
branching is important, but the actual angles taken and
the lengths of branch segments are immaterial to the
language generation; they matter greatly at the interpre-
tation step, of course. Thus the tree topology is impor-
tant but the geometrical scaling of parts is not important.
Similarly, the production rules are applied to segments of
any length and rotation, and hence are topological. The
context-sensitive plant productions require the same form
but require a mechanism for specifying context of the
replaced segment.

The Carpenter mountain language requires a graph-
replaces-graph form, with attachment information for
before and after replacement. It is context-free, however.
The geometry is derived from the finite alphabet of dis-
placement factors in an interpretation postprocessing step.
Only the topology of the language is important. Direc-
tionality is not important in this case,

Directionality is important for most of the languages
in Mandelbrot's book. The replacement rules are of the
form graph-replaces-are, although tree-replaces-are usu-
ally suffices. Geometry is always important in these
languages. In analogy with the other languages in this
paper, I have used a grammar to generate the data
representation and assumed a postprocessing step for data
inlerprelation. For the languages in Mandelbrot, the
interpretation step is mostly cosmetic - removing arrow-
heads and substituting solid lines for dotted lines. The
ceometry is carried with the production rules which
means that they must work under affine transformation.
These grammars might be most appropriately described
as parallel picture grammars which are parallel graph
grammars with an enforced geometry.

It is difficult to find a single formal grammar defini-
tion that will capture all of the aspects above, so my
intention is to give an intuitive definition for graftals indi-
cating a possible form for the formal definition of the
representation. Formalization of the crucial interpreta-
tion step must await further work.

There have been several attempts at extending 1-
dimensional L-systems to graphs[4,5,15,16,18]. It turns
out to be quite difficult to do concisely. The general
notion is based on a picture being a bounded subset of E2
or E® that may have color, It is replaced with another
picture, perhaps empty, with the same bounds. The rules
are translation, scale, and rotation invariant. Thus when-
ever the left side of a rule is found to apply to a picture -
by thinking of it as a template which is moved about over
a “‘word”, or another bounded, colored subset of space, by
affine transformation - it is replaced by the right side of
the rule transformed by the same transformation required
for the template match.

The replacement rules are easy to specify in the
context-free case. In the context-sensitive case, a neigh-
borhood is defined to be a picture as above, and only a
subset of i, its kernel, is replaced by a right-side picture.
The kernel and the right-side picture must have the same

bounds. The entire neighborhood (including the kernel)
must mateh as a template before the kernel is eligible for
replacement.

Graph grammars use graphs instead of pictures.
Templates are replaced by “‘coverings’” of labeled nodes
by labeled nodes and labeled arcs by labeled ares, so
matches are determined on the basis of connectivity and
label matches. The main difficulty in defining how the
replacement rules work is that of defining the connec-
tivity before and after. We have shown how to solve this
problem for very simple graphs in the examples of this
paper.

A very general approach, based on the “push-out"
construction of category theory, is presented in Ehrig and
Kreowski[d] which generalizes the pioneering paper of
Ehrig, Plender, and Schneider(3] to the parallel case. The
restriction of the general case to injective mappings, or
embeddings, might suffice for our purposes. An even
more restrictive approach which works for all examples
here except the Carpenter mountains is the ‘“handle sub-
stitution parallel graph grammars” of Ehrig and Rozen-
berg|5], where a “handle” is a graph are together with its
source and target nodes. Two paper collections|1,13] and,
in particular, the two surveys by Ehrig[6] and Nagl[17]
are good starting points for graftal investigations.

PARTICLE SYSTEM PLANTS

Bill Reeves has written a program for generating
trees, the output of which is shown in Plates
ASPEN.SPRUCE, MEADOW, and MAXFIELD[21].
These form another class of rich, complex, natural objects
which are related to particle systems in their use of
thousands of randomly controlled particles, or leaves, and
to graftals in their use of small initial deseriptions which
are used to generate elaborate tree structures of high
complexity. A major difference is the use of randomness
throughout (but we shall not be surprised if finite sets of
well-selected numbers work as well). Each tree is essen-
tially a data structure with many elements, each of which
controls one of the random processes used to realize the
tree at rendering time. These include height, width,
branching angles, bending factors, number of branches,
and coloring. For example, an aspen tree is specified with
about 120 parameters. Another difference is the lack of
an obvious way to obtain plant growth.

So far as similarities are concerned, besides sharing
the database amplification property with graftals, these
trees have the ‘“closer you get, the more you see” pro-
perty in common with them due to the recursive leaf gen-
eration feature which causes more leaves to be rendered
as the screen space occupied by the tree gets larger.

The lighting model, derived in conjunction with Tom
Duff and Rob Cook, approximates the extensive self-
shadowing of plants by darkening from the surface toward
the trunk, modulated by branch density. This is in addi-
tion to the surface lighting obtained by assuming the
outer envelope of the tree is shaded by conventional
models. Neighboring trees also cast shadows determined
from their envelopes - e.g., ellipsoids or cones. These
lighting techniques go through for the graftals if an
approximating envelope can be extracted.

%%/ «SIGGRAPH'84

SUMMARY

A rich class of plant models is presented here. The
models gain their interest from great visual complexity
approaching that of Nature's plant kingdom. The com-
plexity is gained with little human effort by the exploita-
tion of the database amplification property of formal
languages, generalized from strings to graphs. These
plants can be represented with efficient data structures,
and they can be made to grow and flower in time.

Failure of the plants to qualify as fractals, plus the
fact that they share much of the spatial complexity of
fractals, led to the definition - intuitive, so far - of the
graftals, a family of objects generated by parallel graph
grammars and including many of the well-known fractals.
They do not, however, have to be fractal - ie., have
Hausdorf-Bescovitch dimension greater than topological
dimension. Because they are, in general, not strictly self-
similar, the Hausdorf-Bescoviteh dimension is difficult to
compute. It is suggested that fractality itself is not the
important property of fractals for Computer Imagery but
that it is their well-controlled database amplification pro-
perty that is of such great usefulness. This is a feature of
the graftal family in general, the amplification being con-
trolled by a finite - sometimes surprisingly small - set of
grammar rules.

The particle system plants of Bill Reeves were intro-
duced to emphasize that neither graftals nor fractals
cover the gamut of natural form generation systems.
What all these systems have in common is the database
amplification property which is very important for the
construction of satisfyingly complex scenes in reasonably
short times. They all also share a loose notion of “'space
filling" with *‘self-similar” constructions but not strictly
enough (in the nonfractal cases) to jump into higher
dimensionality.

It has been demonstrated that randomness is not
necessary for pictures of interesting complexity. Random-
ness is just a convenient way of generating a well-
dispersed set of numbers, instead of doing it by hand.
Tom Duff has pointed out that the pseudo-random
number generators used in computer science are based on
a related principle: From a small set of generating rules,
they supply strings of sufficient length and complexity to
simulate true randommness. There are measures of how
¢lose to random these finite sequences are. This raises the
question of what is sufficient complexity to satisfy
perceptual and esthetic requirements of human beings.

It is well-known that a set recognized by a Turing
machine is equivalent to a language generated by a type 0
grammar. Thus the operation of a computing machine is
strongly related to the generation of language by a formal
grammar, The formal language approach advocated here
renders the computational processes of such a machine as
objects - the state of a computation is frozen and called a
picture. Strictly speaking, it is a data representation of a
picture. The representation and the thing represented are
kept separate. After the machine has done its work, the
artist may step in and modulate the computed form with
esthetic judgment, thus becoming the composer of the
image.

ACKNOWLEDGEMENTS

My colleagues in the Graphics Project have aided me
with their usual zest. Specifically, Loren Carpenter and
Bill Reeves contributed important comments and pictures
to the work, Rodney Stock and David Salesin discussed
the creasing problem with me at length, and Rob Cook
and Tom Porter are authors of the principal rendering
software used. Ed Catmull, Tom Duff, and Andrea Kauf-
man were helplul critics as well.

REFERENCES

1. Claus, Volker, Hartmut Ehrig, and Grzegorz Rozen-
berg (Editors), Lecture Notes in Compuler Science
No. 73: Graph-Grammars and Their Application
to Computer Science and Biology, Springer-Verlag,
Berlin /Heidelberg/New York (1978). Proceedings of
the conference held at Bad Honnef, West Germany,
October 30-November 3, 1978.

2. Cook, Rob, Loren Carpenter, Thomas Porter, Wil-
liam Reeves, David Salesin, and Alvy Ray Smith,
Road to Point Reyes, By the Lucasfilm Computer
Graphics Project. Title page picture for SIG-
GRAFH '83 Proceedings. July 1983.

3. Ehrig, Harmut, M. Pfender, and H. J. Schneider,
“Graph-Grammars: An Algebraic Approach,” pp.
167-180 in Proceedings of 14th Annual Symposium
on Swilching & Automata Theory (October 1973).
Now known as the Symposium on the Foundations
of Computer Science.

4. Ehrig, Harmut and H.-J. Kreowski, “Parallel Graph
Grammars,” pp. 425-442 in Aulomata, Languages,
Development, ed. Aristid Lindenmayer and Grzegorz
Rozenberg, North-Holland Publishing Company,
Amsterdam/New York/Ox[lord (1976).

Ehrig, Harmut and Grzegorz Rozenberg, “Some
Definitional Suggestions for Parallel Graph Gram-
mars,” pp. 443-468 in Automnaie, Languages,
Development, ed. Aristid Lindenmayer and Grzegorz
Rozenberg, North-Holland Publishing Company,
Amsterdam/New York/Oxford (1976).

6. Ehrig, Hartmut, “Introduction to the Algebraic
Theory of Graph Grammars (A Survey),” pp. 1-69
in Lecture Noles in Compuler Science No. 73:
Graph-Grammars and Their Application to Com-
puter Science and Biology, ed. Volker Claus,
Hartmut Ehrig, and Grzegorz Rozenberg, Springer-
Verlag, Berlin/Heidelberg/New York (1979).

7. Fournier, Alain, Don Fussel, and Loren C. Car-
penter, “Computer Rendering of Stochastic
Models," Communications of the ACM 25(6),
pp. 371-384 (June 1982).

8. Herman, Gabor T. and Grzegorz Rozenberg,
Developmental Systems and Languages, North-
Holland Publishing Company, Amsterdam/New
York/Oxford (1975).

9. Hogeweg, Pauline and B. Hesper, “A Model Study
on Biomorphological Deseription,” Pattern Recogni-
tion 8, pp. 165-179, Pergamon Press (1974).

en

Computer Graphics

Volume 18, Number 3 July 1984

11.

13.

14.

16.

18.

19.

Hoperoft, John E. and Jeffrey D. Ullman, Formal
Languages and Their Relation to Automata,
Addison-Wesley Publishing Company, Menlo Park,
California (1969). The latest edition of this book is
entitled Introduction to Automata Theory,
Languages, and Computation, 1979, and includes a
small section on L-systems.

Kawaguchi, Yoichiro, “A Morphological Study of
the Form of Nature,” Computer Graphics 16(3),
pp. 223-232 (July 1982). SIGGRAPH '82 Proceed-
ings.

Lindenmayer, Aristid, “Mathematical Models for
Cellular Interactions in Development, Parts 1 and
I,” Journal of Theoretical Biology 18, pp. 280-315
(1968).

Lindenmayer, Aristid and Grzegorz Rozenberg (Edi-
tors), Automata, Languages, Development, North-
Holland Publishing Company, Amsterdam/New
York/Oxford (1976). Proceedings of the conference
held at Noordwijkerhout, The Netherlands, March
31-April 6, 1975.

Mandelbrot, Benoit, The Fractal Geometry of
Nature, W. H. Freeman and Company, San Fran-
cisco (1983). The 1983 printing differs from the
1982 printing by the addition of a small section at
the end.

Mayoh, Brian H., “Another Model for the Develop-
ment of Multidimensional Organisms,” pp. 469-485
in Aulomata, Languages, Development, ed. Aristid
Lindenmayer and Grzegorz Rozenberg, North-
Holland Publishing Company, Amsterdam/New
York/Oxford (1976).

Nagl, Manfred, “On a Generalization of
Lindenmayer-Systems to Labelled Graphs,” pp.
487-508 in Automata, Languages, Development, ed.
Aristid Lindenmayer and Grzegorz Rozenberg,
North-Holland Publishing Company,
Amsterdam/New York/Oxford (1976).

Nagl, Manfred, “A Tutorial and Bibliographical
Survey on Graph Grammars,” pp. 70-126 in Lecture
Notes in Computer Science No. 73: Graph-
Grammars and Their Application to Computer Sci-
ence and Biology, ed. Volker Claus, Hartmut Ehrig,
and Grzegorz Rozenberg, Springer-Verlag,
Berlin/Heidelberg/New York (1979).

Paz, Azaria, “Multidimensional Parallel Rewriting
Systems,”” pp. 509-515 in Automata, Languages,
Development, ed. Aristid Lindenmayer and Grzegorz
Rozenberg, North-Holland Publishing Company,
Amsterdam/New York/Oxford (1976).

Reeves, William T., “Particle Systems - A Tech-
nique for Modeling a Class of Fuzzy Objects,” ACM
Transactions on Graphics 2(2), pp. 91-108 (April
1983).

Smith, Alvy Ray, Loren Carpenter, Pat Cole, Tom
Duff, Chris Evans, Thomas Porter, and William
Reeves, “Genesis Demo,” in Star Trek II: The
Wrath of Khan, Paramount (June 1982). Created
by the Lucasfilm Computer Graphics Project for
Industrial Light and Magic.

21.

22.

Smith, Alvy Ray, Loren Carpenter, Ed Catmull,
Rob Cook, Tom Duff, Craig Good, John Lasseter,
Eben Ostby, William Reeves, and David Salesin,
Andre’ and Wally B., Created by the Lucasfilm
Computer Graphics Project. July 1984,

Stevens, Peter S., Patterns in Nature, Little, Brown
and Company, Boston (1974).

Voss, Richard F., Fractal Lunar Mist, Cover pic-
ture for SIGGRAPH ’83 Proceedings. July 1983.

Plate ASPEN.SPRUCE. Aspen and spruce trees by Bill
Reeves. These are related to particle systems and graf-

tals.

Plate BUSHES.
flowers or leaves.

Several context-sensitive species without

/// «3SIGGRAPH'84

Plate CARTOON.TREE. A 2-D rendering of the Plate GARDEN. Several context-sensitive graftal species
context-free grammar in Figure FREETREE. showing the variety easily obtained.

Plate FOUR.FRACTAL. The upper left mountain Plate GARDEN.DROP. Several more examples of
results from only one subdivision factor. It is unsatisfac- flowering species, with dropped shadows.

tory. The upper right mountain resulted from three care-

fully chosen factors, and the lower left from five. They

both work. The lower right mountain is generated using

random factors. It is clear that deterministic mountains

(e.g., the upper right one) suffice.

Computer Graphics ~ Volume 18, Number 3 July 1984

Plate GREEN.FLAME. Several 2-D renderings of the Plate MEADOW. More computer generated aspen and
grammar in Figure SENSTREE, varying the parameters spruce trees, seen against a meadow handpainted by John
of the rendering program Gene. Lasseter.

Plate MAXFIELD. ~ Computer generated aspen and Plate THREE.THISTLE. The plant on the left has only

spruce trees, with colormg inspired by Maxfield PaI“I‘lSh, one elevation angle (actually two, but one is the negative

in a fern-cm_'erfed glen painted by John Lasseter with a of the other); this plant is unsatisfactorily regular. It has

computer painting program. only one azimuth angle also. The center plant has only
two elevation angles and two azimuth angles. It works.
The plant on the right is fully random. Every angle
(azimuth and elevation) is distinet. It works too. But
the principal result illustrated is that fully deterministic
plants (e.g., the center one) suffice.

//// ©SIGGRAPH'84

Plate VITA.PLANTS. Several variations obtained with Plate WISP.GROWTH. Frames 20, 40, 60, 80, and 120
the Gene program. from a growing plant movie. The plant is also slowing
rotating,.

Plate WHITE.SANDS. Several 3-D renderings of the Plate WITH.WITHOUT. A 2-D rendering of the gram-
context-sensitive grammar 0.0.0.11.1.1[1].1.0 mixed with mar in Figure SENSTREE, showing the 35th generation
particle system grasses. with and without flowers.

	Graftal-1
	Graftal-2
	Graftal-3
	Graftal-4
	Graftal-5
	Graftal-6
	Graftal-7
	Graftal-8
	Graftal-9
	Graftal-10

