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PLANAR 2-PASS TEXTURE MAPPING AND
WARPING

Alvy Ray Smith

ABSTRACT

The 2-pass transformation replaces a 2-D  (2-
dimensional) transformation with a sequence of orthogonal,
simpler 1-D transformations. It may be used for the closely
related processes of texture mapping and warping in com-
puter graphics and image processing. First, texture maps
onto planar quadric and superquadric surfaces and, second,
planar bicubic and biquadratic warps of images are shown to
be 2-pass transformable. A distinction between serial and
parallel warps is introduced to solve a confusion in terms
between computer graphics and image processing. It is
shown that an n-th order serial polynomial warp is equivalent
to an (n%4n)-th order parallel polynomial warp. It is also
shown that the serial equivalent to a parallel polynomial warp
is generally not a polynomial warp, being more complicated
than a polynomial. The unusual problem of bottlenecking
and the usual one of antialiasing are discussed in the 2-pass
context.
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INTRODUCTION

The term warping is often used in image processing to
mean a 2-D resampling of an image. For example, when a
photo of the Earth’s surface is transmitted from a satellite
ground, it is typically warped to correct the surface patch for
surface curvature, an oblique viewing angle, or lens aberra-
tions. In general, warping is a continuous mapping of a 2-D
planar region into another 2-D planar region. In image pro-
cessing, it is the digital approximation of such a mapping
which is of interest.
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Pixar

The term texture mapping is used in computer graphics
to also mean 2-D resampling of an image, particularly when
the target is the 2-D projection of a 3-D surface, viewed
through a viewing transformation with perspective. It is the
digital approximation of a presumably continuous mapping
that is of interest in computer graphics also.

A useful distinction may be made between the use of
warping in image processing and texture mapping in com-
puter graphics. Image processing uses the mapping to correct
or rectify images - to map a nonrectangular patch onto a rec-
tangular one - while computer graphics proceeds the other

direction to map a rectangular patch onto a nonrectangular
one.

Another distinction - a confusion really - between the
two historically separate disciplines is not helpful. The terms
biguadratic and bicubic are used differently by the two
groups. The terms serial map (warp) and parallel map
(warp} are introduced to clarify this situation.

Examples from each of computer graphics and image
processing are examined here and shown to be effectively
simplified using the 2-pass technique [3). First, the 2-pass
texture mapping of a texture onto a planar superquadric sur-
face is derived. For example, a rectangular framebuffer pic-
ture may be mapped onto a disk by the technique. Then the
2-pass warping of an image onto a planar bicubic or biqua-
dratic patch is derived. The case where the edge of an image
remains a rectangle but the interior points are warped - which
is called a frozen-edge warp - is particulary suitable for
image processing. Then the mathematical relationship
between serial and parallel warps is derived using some of
these results as examples.

Finally, two generic problems with the 2-pass technique
are emphasized. The mathematical problem of bottlenecking
is reexamined, and since it is the digital approximation of the
2-pass technique which is of primary interest, the important
subject of antialiasing is investigated.

The work here builds on the original paper [3] and con-
tains results derived in a series of internal technical memos
[7-10].

2-PASS NOTATION AND REVIEW

If u, and v, are the coordinates of a source picture and
u, and v, those of a target, then a general parallel 2-D coor-
dinate mapping - or parallel map for short - may be defined
by any two functions x and y such that
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(1 v,) = (X QgaVg), ¥ (Ug,¥5) ) -

In this paper, u and v are understood to be parameterizations
of the horizontal and vertical coordinates of a picture.
Parameters u and v with no subscript are assumed to be u
and v,.

A picture of course is a mapping of each point of uy
parameter space to a set of colors - e.g., the grays. The term
image will be used here to mean picture - as in ‘‘image com-
puting” or ‘‘image processing” - as well as for its usual
mathematical meaning, with the context distinguishing which
use is intended. The term image computing will be used to
mean all of traditional computer graphics plus all of tradi-
tional image processing. This paper is an image computing
paper because parallel maps include the texture maps of com-
puter graphics and the warps of image processing. Thus
parallel maps will also be called paralle! warps.

The objects on which digital image computing focuses
are digitized pictures - sampled versions of continuous
images, where each sample is of course a pixel. Although
we will talk of mappings of the set of continuous pictures to
itself, it is really the sampled source and target pictures
which are of ultimate interest.

Sampling and filtering theory is now a well-understood
discipline for correctly representing continuous pictures by
arrays of pixels, but it is computationally expensive. The 2-
pass technique is interesting because it suggests a cheaper
solution for parallel maps on sampled pictures although it is a
technique described in terms of continuous functions and pic-
tures.

Perhaps the most general presentation of the 2-pass
technique appears in [3], but approximately simultancous
work was occurring in industry [2] and in image processing
[5]. All of these in turn refer to earlier works on the special
case of image rotation in the plane.

The basic idea is to replace a parallel map with a
sequence, or composition, of parallel maps, where each map-
ping in the sequence is computationally more interesting
(e.g., cheaper) than the original map. The 2-pass technique
replaces a given parallel map with a sequence of two parallel
maps, where the first applied is called the first pass, or hor-
izontal pass, and takes the form

() = (F, (g )ovg)

where u; and v; are the coordinates of the intermediate
image. The second pass, or vertical pass takes the form

(ut ’V;) = (uj :gu,- (vi )) ]

The decomposition of a parallel map into a sequence of map-
pings results in an overall mapping from source to target
called a serial 2-D coordinate mapping or a serial map
(serial warp) for short. (It has been shown that three map-
pings in the sequence is of interest in the case of rotation in

the plane [6].)

It is sometimes important to reverse the order of the
decompeosition, with the vertical pass first, the horizontal pass
second. The functional expressions are generally different
for the two orderings. When a distinction between the two
orderings is required, “*horizontal pass first” or the ‘‘vertical
pass first” will be used. The horizontal pass first is assumed
unless otherwise stated. See Figure 1.
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Each of the two mappings, the first and second passes,
is considered simpler than the given parallel map because s
applies across a line of constant v, and &y, down a line of
constant u;. In the digital approximation, lines of constant Vg
are the horizontal scanlines and those of constant u; are verti-
cal scanlines. Resampling along a scanline is a 1-D problem.
Thus, in a sense, the 2-pass technique is the replacement of a
2-D resampling problem with a sequence of two 1-D resam-
plings. A more careful analysis shows that a true 1-D resam-
pling is sometimes inadequate, but a simplified 2-D resam-
pling may suffice. This will be explored further below.

The 2-Pass Technique

The problem of replacing a given parallel map with a
serial equivalent was solved in [3]. It is restated and solved
again here to show the use of the current notation. Given
parallel map

(e (us e ), ¥ (s 5)) = (v,
it is desired to decompose it into two sequential mappings
(x ’(us ,Vs ), V“.) = (ui 1vi)
(ui: y’(ui V)= (u: V).
The problem is to express x” and y’, the two sequential scan-
line functions, as functions of the given mappings x and y
and the source coordinates u, and v, for x’ or the intermedi-

ate coordinates u; and v; for y’. The horizontal-pass scanline
function is obvious:

X (ug,v,) = [, () = x (ug,v,) .

We shall call this the first step of the 2-pass technique. For
the vertical-pass scanline function, note that ; =x(u;,v,)
and v; =v;. Let h, be the solution of u; = x(uy,v,) for u,.
This solution is the second swep. So h,, is a function of
v, =v; and

¥u,v) = 8,Vi) =y (hu‘-(vi}-vj)

for the third step. Vertical-pass-first scanline functions are
derived in an analogous manner.

A difficulty with the 2-pass technique is obtaining a
closed form for the second-pass scanline function. Some-
times this is not possible and numerical techniques must be
used. In other cases, such as when there are multiple solu-
tions k,, numerical techniques are preferred. The bicubic
and biquadratic warping techniques in this paper are of this
variety [8, 9].

Another difficulty is the so-called borleneck problem.
There are cases [3] where the two scanline functions exist in
closed form but are useless. If the source picture is mapped
to a point or to a line segment by the first pass, then it hardly
matters that a mapping exists which takes this intermediate
image to the desired target picture. Although the shape
would be correct, the color information would have been lost
in the vanishing arca bottleneck of the intermediate image.
Although experience has shown that a bottleneck can always
be avoided - e.g., by reversing the order of horizontal and
vertical passes - this has not yet been proved to be the case.

A final difficulty appears only in the digital approxima-
tion of the 2-pass technique. This is the antialiasing problem
alluded to earlier. If only 1-D sampling and filtering is used
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along scanlines, then serious aliasing can occur. In many
interesting cases studied in [2, 3, 5], this is not a problem,
but in others - such as in this paper (and in [7]) - it is.
Again, experience has shown that aliasing artifacts can
always be avoided - e.g., by reversing the order of horizontal
and vertical passes - but this has not yet been proved to be
the case.

SUPERQUADRIC TEXTURE MAPPING

Following Al Barr [1], given a ‘‘horizontal”” plane curve
h and a “‘vertical’” modulating plane curve m

h(v) = [h1(v) ha(v)]l, vesSvsvy,
m(u) = [my(u) mo(u)l, wpsu<u,,
a spherical product surface is defined to be
S(uv) =[my)h(v) myhyv) mou)l

where ugSusuq, vgsv=v,. We have reversed the orientation
of h and m from [1], so h is actually vertical here - ie., it is
a function of the vertical parameter v - and m is horizontal.
A projected spherical product surface has m4(1) =0 - ie., is
the orthographic projection of a spherical product surface into
the xy -plane.

Barr [1] has shown how the (super)quadrics -
(super)ellipsoids, (super)hyperboloids of one and two sheets,
and (super)toroids - can be represented as rescaled spherical
product surfaces. A (super)toroid may be thought of as an
extended (super)ellipsoid; it has the same form except the
modulating function is offset by a constant o and u varies
over 27 radians. Table 1 gives the details of the defining
functions for the superquadric family. An n-hyperboloid is
an hyperboloid with n sheets. In all cases, the superquadrics
give the quadrics if the two squareness parameters € and €
are set to 1.

It will be shown below (see also [7]) that the projected
(super)quadrics, under ‘‘standard computer graphics transfor-
mations’’, are 2-pass transformable. A parallel map is 2-pass
transformable if it can be converted into an equivalent serial
map by the 2-pass technique described above.

The standard computer graphics transformations are the
following: In computer graphics, objects are flown through
3-space and projected into 2-space with a perspective projec-
tion using a 4x4 matrix multiplication followed with division
by the homogeneous coordinate. These classic transforma-
tions shall be called CG transforms. The 4x4 matrix will be
represented here by

ae i m
b f jn
] 2
c gk o
dhl p

The transformation of a point [X (u,v) Y (u,v) Z(u,v) 1] by
a CG twransform is accomplished by
XY Z W]=XYZIT.
The homogeneous divide by W~ after this transform gives
X’ _ aX +bY +¢Z +d
w’ mX +nY +o0Z +p
e i eX +fY +8Z +h
mX +nY +oZ +p’

For example, if X(u,v)=u, Y(u,y)=v, and Z(u,v)=0
and we apply the 2-pass technique, the simple rectangle
under CG transform result of [2, 3] is obtained.

The 2-D Superquadric 2-Pass Functions

The 2-D superquadrics are just the projected 3-D super-
quadrics - ie., with mo(u) = 0. The horizontal and vertical
scanline functions for the 2-D superquadrics under CG
transforms are derived to show a typical application of the
2-pass technique.

The general class of 2-D superquadrics under 3-D CG
transforms is given by

m

n

[mydh (v) myu)hy(v) 0 1] o

a n o e

=08 =m0
.

P

Scaling factors for the two axes of the projected superquadric
have been subsumed into the diagonal elements of the CG
transform matrix. Thus

am (u)h(v) + bm(uh,(v) +d
mm () (v) + nm(wh,(v)+ p
em(u)h;(v) + fm(w)h,(v) + h
mm )k (V) + om0 (V) +

x(u,v) =

yy)=

Application of the first step of the 2-pass technique
immediately yields, as the horizontal scanline function for

scanline v,:
A mm)+d
T8 = Mo m ) + p

where
A(V) =ah I(V) * bhz(\a’)
M) = mh(v) + nhyv) .

The second step is to solve
AW)m(u)+d
CT Mm@+ p
for u = h, (v) for vertical scanline ;. Expanding and rear-
ranging gives
d —py

) = e — A"

As will be seen immediately, it is unnecessary to complete
the solution of this equation for u.

The third step yields the vertical scanline function by
substituting the expression just obtained for mi;(u) into the
expression above for y (i,v):

(d — pu; Yeh(v) + Tho(v)) + k(M@ )y; — A(v))
(d = pu; )(mhy(v) + niy(v)) + p(MO Dy — A(v))

8,(v) =

Since v; = v, we will drop the subscript from v; also. The
scanline function may be rearranged to give

E(u)h(v) + Fludho(v)
GhI(V) + th_(v)
E(u), Fu), G, and H are defined in Table 3, which, with

8, v) =
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Table 2, summarizes the application of the formulas just
derived to the superquadric family. All quantities are as
defined above if not otherwise specified.

The vertical-pass-first scanline functions may be derived
similarly by exchanging x and y and also u and v in the
expression for the parallel mapping and then applying the 2-
pass technique. To get an analytic solution, £ = 1 must be
assumed. This will be called a semi-superquadric case.

Suppose it is desired to map the contents of a
framebuffer onto a disk with T the identity transformation.
The parameterization used thus far is awkward for this case
since it generates a polar view. A more natural mapping is
that used for Figure 2. It corresponds to an ellipsoid
expressed as the spherical product surface

Suy)=1[ mo(u)h(v) hy(v) my(u)hi(v) ]
before but with

T b - s
-T<u=<m, ) sv = i This is nothing more than a per-

with  m(u), mo(u), hi(v), hy(v)  as

mutation of the 3-D coordinates used before and a swapping
of the parameter space axes. For the example of mapping a
framebuffer to a disk, the horizontal-pass-first formulas hold
for the superquadric case in the alternative parameterization,
just as before, and the vertical-pass-first functions are simi-
larly good only up to the semi-superquadrics. Figure 2 also
illustrates exercise of the two squareness parameters.

BICUBIC AND BIQUADRATIC WARPING

A bicubic patch may be described parametrically by two
parameters u and v, each varying over the interval [0.,1.],
and the two equations below:

ay a, a, as -va ]

xuyv)=[uduu 1] % 45 BE o ¥ = uAv’
’ ag ag aj arp v

_312 a3 Qg 015J Lt

by by by by | [,3]
ol = [ a8 5 1 by bs bg by vZ_BT
yuyv)=[w u“nl] by by by by - = uBv

biy biz by bys | L1 ]

The addition of a third equation of similar form,
z(u,v) = uCv!, defines a full 3-D bicubic patch, and a
fourth, w(1,v) = uDv!, may be added for the homogeneous
coordinate convenient for perspective transformations. How-
ever, attendon shall be restricted here to the planar case.
Moreover, it will be computationally advantageous to con-
sider only those planar patches which are nonfolded, or sin-
gle valued. That is, no point (x,y) is the image of more than
one point (u,v).
The equations for x and y expand into
x(uv) = aguvha w v agu®y +asutta et ra s ia v rau
aguv+aguv a guv +a a1 iha v iea v ags
yuy) = b’y b v b oy +b g +b iy *+b suv b gu v +hou b
boutv+b gy +b 1guv +h 111 +b 130 +b 13w 2b v b s

which may be cast into expressions of the known coordinates
X; and y; by solving for the boundary conditions. For exam-
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ple, v = 0 corresponds to one edge of the bicubic patch and
v =1 to the opposite edge, and similarly for # =0 and
u = 1. Define matrix X to be the following array of sixteen
specific x coordinates (see Figure 3):

200 x(ue0) x(u),0) x(1,0) Xp X, X3 X3
x(0,vo) x(uova) x(uyve) x(1,v0) X4 X5 Xg X7
A x(Ov1) x(uovi) x(uyvy) x(Lvy) |7 | x5 x9 x50 %9
x(0,1) x(up1) x(uy,1) x(1,1} X12 X13 X14 X135

Then it can be shown that the x; are related to the g; by a
compact matrix equation:

X = vaTu?

where

1 £ 1.0
and V is defined similarly in terms of v and v .
This equation can be solved for the a; in terms of the

Xt

A=UX"vT
where V71 represents the inverse of the transpose of V.
Similarly, the b; in terms of the y; are given by

B =Ulyl'vT

where Y is defined similarly to X, but for specific y coordi-
nates. It can be shown that U™' may be representsd as
follows, where for notational convenience, we let g = 1-uy,
oy = 1-uy, g = l+uy, uy = l+uy, Uig = U1—Ug,
Uy = Hg+u1, Uy = u0+u1+1, and ETOI = u0u1+u0+u1, and
similarly for vy and v :

L 0 0 0
Upliy
-1 1 -1 1 0 1 0 0
kg U} By —Ug Ul glyg
U= |
“Hor ¥y —Ho kol 0 0 1 0
ugwy 0 0 0 Lyl
1
0 0 0 —
Uqglty

and similarly for V™! in terms of the v;.

A special case is the cubic patch, a bicubic patch with
terms which have exponents summing to three or less. This
is equivalent to matrices A and B being all zeros above the
bend-sinister diagonal. Several other special cases of interest
are discussed below.

A Special Case: The Bicubic Frozen Edge

A simple special case (Figure 4) requires that the boun-
dary of the bicubic patch be a rectangle. If the uv parameter
space is thought of as a rectangular source picture and its
image under x(u,v) and y(u,v) as a bicubic patch target pic-
ture, then the special case requires that the rectangle around
the rectangular patch map to itself - hence the Frozen Edge.
Only the four internal control points (xs5,ys), (x 67 6)» (X9.¥9)
and (x 4,y 10) move from source to target. Thus
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0 MD ul 1
0 X5 Xg 1
X" - 0 Xg Xqp 1
0 Uy Uy 1
[0 0 0 0 ]
Yo ¥s Ys Vo
Y, =
Y1 Y9 Yo V1
1 1 1 1
And these collapse the expressions for A to
ag —(agtas) a, 0
—(a 0+a 8) ﬂo+a -2+CI 8+a 10 —(a 2+a 10) 0 ;
A = =UIxIvT
as *(a 8+€1 10) a 10 1
0 0 0 0

and similarly for B, both of which become particularly sim-
ple for the special case of the cubic frozen edge.

A Special Case: The Biquadratic Patch

By a derivation analogous to that for the bicubic patch
above and using the notation of Figure 5,

A, =UIxIv;T

where the subscript 2 denotes the biquadratic case (3x3
matrices) and

1 0 o
L3I
1 -1 1
-1 1
U2 = | U, 1 —Uq 0 — 0
U4l
uq 0 0 171 1
LI
Uy

and similarly for V5! and also B,.

Common examples of biquadratic warps are the pin-
cushion and barrel distortions of video - see Figure 7. So
biquadratic warps may be used to correct for these distor-
tions.

Analogous to the cubic patch, a quadratic patch (or
quadric paich) is defined to have only those terms with
exponents summing to two or less, so all elements above the
bend-sinister diagonals of the corresponding 3x3 A, and B,
martrices are zeros.

A Special Case: The Biquadratic Frozen Edge

There is a Frozen Edge special case of the general
biquadratic patch analogous to that for the bicubic patch dis-
cussed above. See Figure 6. Using the techniques above, it
can be readily shown that

ag —ag 0

Ay = |-ay ag 1 |=UsIXIv;T
0 0 0|
by ~bp 0

By = |-by by 0 |=Us'YLV;T
g i8]

where
X4l
q="—— =
UiV vy
Y4V
by=——"——
Ul vV

and point ( x4, ¥4) is the only control point that moves.

The quadratic frozen edge is a particularly simple spe-
cial case of the biquadratic frozen edge. The bilinear patch
was fully treated in [3].

The Horizontal Function f, (1)

For subsequent convenience, let the rows of A be
denoted by ag, a;, a,, and az. Also let

f(v) = AV =[ Fov) F100) fov) fav) ¥ =

[ agv! alvT asz agv! |7

Direct application of the 2-pass technique first step yields
folu)= uAvsT = uf(v,)
for horizontal scanline v, and
vl =[vivlv, 1].

The biquadratic case may also be represented in an analogous
fashion.

The Auxiliary Function k, (v)
The 2-pass technique second step requires that
xy)u =0

be solved for 4 = A(v). (The subscript u; is dropped from A
and g for convenience in this and the following section.) In
words, the set of u’s is desired which map into #; under the
horizontal scanline functions. Since x(u,v) = uf(v) is cubic
in u, the equation may be written as a general cubic equa-
tion, the auxiliary cubic equation,

o HPuHyu+8 = 0
where the coefficients are the following functions of v :

o =folv)=ag’

B=F )=’
Y=Faov) =av’

8=F 3wy =ayv’ —u; .

In general, the auxiliary cubic has three (non-polynomial)
solutions, hg(v), hy(v), and h,(v), which may be obtained
using classic cubic equation solution techniques. It is
difficult to determine which of the three are the valid solu-
tions, and two of them may be complex. The solution
method suggested below capitalizes on the restriction to
planar nonfolded patches to avoid these difficulties,

A Special Case: The Planar Nonfolded Bicubic Patch

Nonfolded patches can have only one valid solution;
only one u on each horizontal scanline can map to the
current vertical scanline ;. This set of u’s is a smooth
function of v, u = h(v). Hence, if we find a solution
u = h(0) for the first horizontal scanline, it can be assumed
to be in the vicinity of the solution for the next adjacent
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scanline and hence be used as a first approximation in a
Newton iteration to the solution for the second scanline.
Then this solution can be used as a starting value for an
iteration to a solution for the next scanline, and so forth,
exploiting the coherence.

So the problem of solving for h reduces to that of
finding good starting values for the Newton iteration. A
crude value would be u; itself. A more refined value comes
from the fact that the horizontal scanline functions have
already been derived in the first pass. For a given v, the
scanline function f, () can be computed for a small number,
say n, of values of u equally spaced along [0, 1] to find two
images which bracket u;. Either of the corresponding values
of u could be used as a starting value for the iteration or a
linear interpolation between them. A set of starting values
could be generated for all vertical scanlines by such a pro-
cedure applied along just one horizontal scanline between
passes. Figure 1 illustrates the use of Newton iteration to
solve a planar nonfolded bicubic patch with the 2-pass tech-
nique.

The Vertical Function 2, (V)

Direct application of the 2-pass technique third step
yields three functions g;, depending on which of the three
anxiliary functions h;, is used. Assuming only the planar
nonfolded case, this reduces to one function g(). Thus, for
vertical scanline u;,

gv)=u,Bvl
where
u, =[ A3 R20) R(v) 17.

In general, this vector changes from (vertical) scanline to
scanline u;. The biquadratic case is analogously handled.

A nonfolded patch would have g(v) one-to-one on the
domain [0, 1] for those points which are images of [0, 1]
under some horizontal scanline function. The fourth, or
alpha, channel of a framebuffer could be used to determine if
a point fit this condition; its alpha channel would be empty if
it were the image of a point outside [0, 1]. So nonfolded
means that all scanline functions, horizontal and vertical, are
one-to-one mappings on the domain [0, 1], subject to this
condition. This can be shown to be equivalent to the
definition of nonfolded given in the Bicubic and Biquadratic
Warping section. Ordinary B-spline or Bezier patch tech-
niques may be used to ensure a patch is nonfolded.

SERIAL VS PARALLEL WARPS
Summarizing, polynomial warps may defined by
x(ug,vg) = usAv_YT
¥ (t5,v5) = u,Bv]

where A and B are matrices of polynomial coefficients and
u, and v, are vectors of powers of u, and v,. A third-order
parallel polynomial warp would have A and B be 4x4
matrices of constants and

3
u, =[u’uu, 1]

ve = [ vs?’ 1"'52 vy 1]
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Since x and y are third-order polynomials in two variables,
the resulting warp is called a bicubic warp. The biquadratic
warp is defined similarly but for A and B both 3x3 matrices
and

us={u52usl]
Ve =[v2v, 1]

A second- or third-order serial polynomial warp would
have

Fo ) = x(ug,v,) = u  Av]

8, ) =y v) = ll,’BViT
which is quite similar in form to the parallel polynomial warp
described above. The parallel equivalent of this serial poly-
nomial warp is derived below where it is seen to be a

higher-order polynomial mapping and hence quite different in
form from the parallel polynomial warp.

The Parallel Equivalent of a Serial Warp
Given a general serial warp

CeQug v ) ve) = (g v;)
iy (u; v;)) = (g ,vp)
the problem is to find x“(u,,v;) = u, and ¥ ugv) =v, in
terms of u, v, x, and y.
The solution is straightforward using the notation:
W=y = x(ug,vg)
is already the desired solution for x’. That is,
X (e V) = x (i) .

Since v; = v, and u; = x (ug,vg),

y ’(us ’VS) = y (ui svi) = y (x (us ,Vs ):vs) %

Example

The parallel equivalent of a serial biquadratic polyno-
mial warp is given immediately by

X (g vs) = u Av,T
¥ (ug,ve) = [ (uAv'? uAvy 11Bv.T .

Thus the parallel equivalent of a second-order serial polyno-
mial warp is fourth order in u, and sixth order in Ve. Simi-
larly, a third-order serial polynomial warp is equivalent to a
parallel polynomial warp which is ninth order in u; and
twelfth order in v,. In general, the parallel equivalent of an
n-th order serial polynomial warp is n’-th order in u, and
(n%+n)-th order in v,.

In particular, for the biquadratic Frozen Edge case dis-
cussed above and implemented serially by Thomas Porter as
part of the Pixar Image Computer demonstration at the
National Computer Graphics Association (NCGA) convention
in Dallas, April, 19835,

x (us WVs) = aﬂus(l‘us )vs (l_vs )‘hus = agiy E.s‘l".';‘Fs‘i‘J".s‘

y(u,v;) = bgu; (1-u; )v‘-(l—v,-)+v,- = bou; i v; Vg
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The parallel equivalent of this is easily shown to be
X(Ug,vg) = Qolig g Vg Votitg
_ a_2 —
¥ (ug,vs) = aoboususvszvs (—ug Hy v Vs )

which is a sixth-order parallel polynomial warp. Clearly, it is
important to know if a ‘“‘biquadratic’’ warp is serial or paral-
lel.

Similarly the *‘bicubic’ warp of the scarab beetle in [5]
is a serial third-order warp equivalent to a twelfth-order
parallel polynomial warp. The mappings in [5] are in reverse
order to those given here with 1, = u;Av} and v, = u,Bv],
but the argument still holds, in the reverse direction. The
problem of converting between the order presented here and
the reverse order is another whole problem not considered
further here.

The Serial Equivalent of a Parallel Warp

The problem here is to find a serial decomposition of a
parallel mapping. But, of course, this is exactly the 2-pass
problem. In particular, it is shown above that parallel poly-
nomial warps are equivalent to serial warps with

x(uy,vy) = u  AvY
and
yv)=[h* k% b 11Bv}
for the bicubic case and similarljy for the biquadratic case,
where h is the solution of u Av;—u; =0 for u,. There are
three solutions 4 for the bicubic case and two for the biqua-
dratic case. The solutions are not polynomials, which proves

that, in general, the serial equivalent of a parallel polynomial
warp is not a serial polynomial warp.

SHADING, DEPTH, MATTING, AND NORMALS

Normals and z information at each point may be carried
along through the 2-pass technique just as are colors (where
alpha, or opacity, is assumed to be a fourth component of
each color). Then shading information is computed from the
normal information and color information, and depth from
the z information, as traditionally done. The alpha channel is
correctly transformed by the 2-pass technique. Therefore it
serves as a matte channel so that a 2-pass transformed object
may be correctly composited with other images.

BOTTLENECK PROBLEM

The area of the intermediate picture can be much less
than that of either the source or the target pictures. This is
called [3] the bottleneck problem. In fact, the intermediate
area can be zero. This happens, for example, for a rotate
about the picture plane normal by 90 degrees.

In general there are several paths from source to target
using the 2-pass technique. First, there is the horizontal pass
followed by the vertical pass - the method usually assumed in
this paper. Second, there is the vertical pass followed by the
horizontal pass. Then there are variations on these two
which incorporate a “‘preprocessing” step for which there is
subsequent compensation. For example, in the case of rota-
tion by almost 90 degrees - say 87 degrees - the bottleneck
can be avoided by doing a simple transpose of rows and
columns to effect a 90-degree rotation then a normal 2-pass
transformation to get the remaining -3 degrees.

The method which has been used successfully for CG
transforms of a simple rectangle is to compute the intermedi-
ate areas which would obtain via a set of four paths and
select the path with the largest intermediate area. The four
paths are (1) horizontal pass first, (2) vertical pass first, (3)
transpose rows and columns then horizontal pass first, and (4)
transpose then vertical pass first. The intermediate areas can
be readily computed - the formulas are given in [3]. As
mentioned in The 2-Pass Technique section, this has always
worked but has not been proved to do so.

The bottlenecking solution for the projected superqua-
drics used here is simply that above. The justification is that
a CG transform of a projected superquadric is the same as a
mapping onto a projected superquadric in canonical position
followed by a CG transform of the resulting 2-D image. The
first step is non-degenerate - see Figure 2. Since this image
falls within a rectangle, the second step is exactly that solved
with the technique above.

The bottlenecking problem for the bicubic and biqua-
dratic warps is ignored here because warping is generally not
used for large geometric distortions - such as scalings and
rotations - but rather for relocation of points within the vicin-
ity of the original positions - i.e., for scale factors of about 1.
and rotations of about 0.

ANTIALIASING

Most of this paper may be read independently of a digi-
tal realization of the technique presented. In this section we
address those artifacts which arise strictly because digital
approximations of the scanline functions are implemented.
The 2-pass technique is attractive because it promises to
cheapen the antialiasing computations required by the
equivalent serial mapping. How true is it that the 2-pass
technique replaces a full 2-D antialiasing problem with a
sequence of two simpler 1-D antialiasing problems - in the
case of 2-D quadrics under CG transform?

Suppose the 2-D antialiasing method we would have
chosen in a full 2-D antialiasing application would integrate
all the pixels in neighborhood N(p) of source pixel p to
obtain the target pixel p’. Presumably N(p) would be the
pixel support of some antialiasing filter. Then a necessary
condition that a serial map perform the same filtering would
be that all these same pixels be used in the computation of
p’. This implies that all pixels in N(p) map into the same
vertical scanline during the first pass, so that the vertical pass
can then map all of them - their intermediate images actually
- into p”.

This condition is rarely met, so it is surprising how
often the use of two serial 1-D filtering steps actually works.
Intuitively, it works whenever the horizontal pass does not
skew neighboring horizontal scanlines in N(p) very far with
respect to one another. Another way to say this is that the
1-D filtering trick works whenever there is not a high fre-
quency change, in the vertical direction, of the object being
transformed. ‘“High frequency’’ in this case means near or
greater than the spatial frequency of the horizontal scanlines.
Figure 8 illustrates the point, and also the fact that changing
the order sometimes corrects the problem. As pointed out
earlier, there is no proof that this is always the case.
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It should be no surprise that 1-D filtering in the discrete
2-pass should occasionally result in aliasing artifacts - one
whole dimension cannot be thrown away without seeing some
effect. The confinuous 2-pass technique, of course, isn’t
plagued by this problem.

A higher-order antialiasing technique to use when the 1-D
filtering trick fails is easily described. Consider a horizontal
scanline of pixels, modeled as a row of abutting squares. The
input domain image of an output pixel which intersects this
scanline is an area bounded above and below by parallel line
segments and left and right by curves (straight lines for several
interesting transformations). The average intensity over this
area is a more accurate average than the strictly 1-D average
over say the midline of this area. Notice that this “‘scanline
area’’ technique takes the 1-D passes back into 2-D computa-
tions. It is essentially a box filtering technique. Higher order
filters would give better results as usual.

All 1-D sampling and filtering used for the figures in this
paper is derived from the standard theories as described, for
example, in [11, 12].
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Figure 1. Planar nonfolded bicubic warp. Source at
upper left. Target at lower right. Intermediate image at
upper right is the horizontal pass for the horizontal pass
first. Lower left is vertical pass for the vertical pass
first.

%

Figure 7. Biquadratic warps. Horizontal passes at the
top, vertical at the bottom. Source is that of Figure 1.
Left is a pincushion warp. Right is an assymmetric bar-

el warp.

e

Figure 2. Superquadric texture mapping. Horizontal
passes at the top, vertical at the bottom. Source is same
as in Figure 1. Left mapping is onto a disk in perspec-
tive. Middle is a simple rotation. Right is superdisk
withe=¢"=3.

B
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Figure 8. Antialiasing failure. Source is that of Figure
1. Left are the vertical and horizontal passes with the
vertical pass first. Right are the horizontal and vertical
passes with the horizontal pass first. The left disk is
seriously aliased at the poles. Reversing order of the
passes solves the problem.
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