3-D ANIMATION TUTORIAL
NIPPON COMPUTER GRAPHICS CONFERENCE
(NICOGRAPH 82)
Tokyo, November 1082

Dr. Alvy Ray Smith
Computer Graphics Project Leader

Lucasfilm Ltd.

ABSTRACT

The organization of a 3-dimensional computer animation system is
described. The basic theoretical foundations of 3-D graphics are covered with
emphasis on the practical applications. This includes the following topics:
antialiasing (sampling and filtering, spatially and temporally), properties of light
and materials (colors, reflection, and transparency), and analytic geometry
(splines, polygons, quadrics, and patches). The major subsystems of a typical sys-
tem are described in some detail: modeling (rigid, articulated, and procedural
models), animation (of camera and model), subdivision (hierarchies of primitives,
fractals), visible-surface decision (culling, hidden-surface removal, shadows), tex-
ture generation (for backgrounds and surfaces), rendering (antialiasing, texturing,
shading, bump-mapping), and compositing (matting). The importance of
simplified logistics and good human interfaces is emphasized.

Intreduction

3-D (three-dimensional) animation in computer graphics may be described by subdividing
the implied tasks into two main parts, those dealing with modeling and those dealing with render-
ing. By modeling is meant the creation of the 3-D database which serves as the "world” to be
portrayed in a synthetic computer graphics sequence. Rendering is a frame-by-frame realization
of the' database. Of course, one database may be rendered in an infinity of ways.Loosely speak-
ing, modeling is the interactive, fast, black-and-white side of the 3-D animation process, and
‘rendermg is the batch-mode, slow, color side. The speed distinction may drsappear in the future
as color computing hardware becomes cheaper and faster.

1. Modeling

One of the most difficult parts of computet animation is getting the object for animation
into the computer - i.e., the creation of the database. There are at least two main ways to
accomplish this modeling process, input scanning and interactive synthesis from primitives.

- 1.1. Digitization

Input scannmg, or -digitization, can mean several things. The most dlrect 3-D digitization
‘tecbmque for a given: object is to simply enter the 3-D coordinates ‘of ‘the object into the com-
puter. Special devices, "3-D digitizers”, are just becoming available. Without such a device,
direct entry is forb)ddmgly difficult.

3-D reconstryction from 2-D information i3 more common. For example, the carefully
drawn plans or blueprints of the object may be digitized using the readily available tablets or (2-
D) digitizers. Several views, say, two or three orthogonal projections, are entcred this way, and




Notes 3-D Animation Tutorial 13 Aug 82

the computer is used to derive 3-D coordinates from the given information. Jim Blinn used this
method to enter the Voyager spacecraft model into the Jet Propulsion Laboratory computers for
his Jupiter/Saturn flyby simulations.

In another technique, grids are projected on the object of interest which is then photo-
graphed from two or more different angles with cameras in a known spatial arrangement. The
photographs are hand-digitized as before at the grid points. Enough information is provided the
computer to obtain 3-D coordinates from triangulation. This method was used by Information
International Inc. to enter actor Peter Fonda’s head into their computers for the movie
Futureworld.

There are several other variations on these triangulation methods, but the main thing to
notice is that all the digitization processes are quite tedious. There are also the problems of
organizing the mass of data so entered into a usable database, removing spurious points, and
smoothing out the noise typical of this kind of point measurement.

1.2. Synthesis from Primitives

Very accurate models may be created directly into a machine using interactive programs for
synthesizing objects from primitive shapes. This is called "solids modeling” in the context of
CAD/CAM, but in 3-D animation for movies much of the "machinery” typically included in
CAD/CAM systems may be omitted. This includes dimensioning and tolerancing and insistence
on realizable objects (by machining a piece of metal, for example).

1.2.1. Primitives

Some common primitives are the quadrics - sphere, cone, cylinder, ellipsoid, paraboloid,
hyperboloid - and their superquadric generalizations, the torus (sometimes included as an
honorary quadric), patches - bilinear, biquadratic, but particularly, bicubic and the rational ver-
sions of these - and polygons. Other primitives are point spots, lines, and surfaces of revolution
(with silhouettes defined by polygons or splines). Many of these might eventually be subdivided
into and realized as, say, polygons, but in the modeling stage they are manipulated in their
higher-order, intuitive form.

1.2.2. Procedural Models

Some other basic building blocks of models which are too sophisticated to be called primi-
tives are fractals and procedural models. A fractal model is really a primitive model to which a
controlled randomizing process has been applied to create a more detailed model. So ”fractals”
should probably be listed in the Model Operations section below. A large class of models are not
describable as combinations of primitives or as fractally deformed combinations of primitives.
This general class-of program-defined or procedural models, includes the fires, by Bill Reeves of
Lucasfilm, used in the movie Star Trek II - The Wrath of Khan (which also includes a good exam-
ple of the fractal technique employed by Loren Carpenter of Lucasfilm).

1.2.3. Model Operations

The synthesis technique of database creation requires that an artist or designer create
objects from the primitives or procedural models available to him. This implies there is some
interactive station, or at least a keyboard-driven language, available to him which gives him
copies, or "instances”, of the primitives and provides him with a set of operations for positioning
and combining these instances.

Some typical operators include the “boolean” operators of intersection, union, and set
difference. These are particularly popular in CAD/CAM contexts. They are difficult to realize in
the case of higher-order surfaces such as bicubic or rational bicubic patches because of the
difficulty in deriving analytic expressions for intersection curves. Numerical, or iterative,
approaches would be used instead.

_2_



Notes 3-D Animation Tutorial 13 Aug 82

Another set of operators is what I shall call "articulation™ operators. Their purpose is to
force a hierarchy on a set of primitives. For example, at the New York Institute of Technology,
there are programs for arranging ellipsoids and cylinders into tree structures representing (but not
necessarily) humans or animals. The nodes of the tree are the joints of the corresponding animal.
This is the reason for calling these articulation operators. Included are operators which allow a
user to manipulate or traverse the tree structures created with other operators.

Underlying any interactive 3-D viewing situation are the rotation, scaling, translation, skew-
ing, and perspective transformations which are the given language of 3-D computer graphics. It is
well-known that one 4x4 matrix will accomplish all these transformations simultaneously or
sequentially. Some hardware commonly available, notably the Evans & Sutherland Picture Sys-
tem, has a 4x4 matrix multiplier built into its hardware since it is such a common operation in
graphics. Very briefly, if a model is thought of as a set of 3-D points, then these points are
turned into 4-D points by appending a unity 4-th coordinate, the so-called homogeneous coordi-
nate. Then a 3-D transformation is accomplished by multiplying a matrix of form

8 S Sp
S s Sp
S S sp
Lttt g

times each 4-D point in the model. - (s stands for scale, S for skew, ¢ for transl:;te, p for perspec-
tive, and g for global scale. Rotates are a combination of 8 and S entries.) Then the 4-D points
are converted back into 3-D points by dividing the first three coordinates by the homogeneous
coordinate. The articulated tree models frequently have a 4x4 transformation matrix associated
with each node to specify relative placement and size.

1.3. Animation

The discussion of graphical database creation has so far centered on the generation of still
frames. One of the powers of, and principal motivations for, computer graphics is time modeling
or "animation”. Strictly speaking, the term "animation” means ”giving life to” and is the domain
of artists we call animators. In the context of computer graphics, it means only "giving motion
to”, and this is how we shall use the term here. The problem is conveniently broken into the two
subproblems of animating the model and animating the camera which views the model.

1.3.1. Model Animation

The usual notion of animation in 3-D computer graphics is called keyframe animation. Only
selected, important frames are modeled using some flavor of static modeler and articulation opera-
tors, and the computer is used to generate the "inbetween” frames. For example, in complex ani-
mation perhaps every third or fourth frame is provided as a keyframe to the inbetweening pro-
gram, which then fills in the missing two or three frames between keyframes. Surprisingly,
computer-aided animation is easier in 3-D than it is in 2-D. This is because the 3-D model con-
tains depth information which is missing from a 2-D model and which must be deduced by the
animation program. This is, in general, a difficult if not impossible problem requiring human
intelligence. No one has yet written an artificially intelligent 2-D computer inbetweener.

An adequately complete animation program - assuming keyframe creation is accomplished
elsewhere - includes the following facilities: The ability to specify path of movement, placement of
frames in time along this path, and real-time playback of generated frames. Also typically needed
are means for changing frame numbers attached to frames, for changing the number of inbetween
frames, for copying motion used in one set of frames to another set of frames, and for creation of
new keyframes, called breakdowns, from old inbetween frames when it becomes clear that the
given set does not give fine enough control. Note that this implies the ability to pass data
bidirectionally between a keyframe modeler program and the animation program (assuming they
are different modules).

— 3 =



Notes 3-D Animation Tutorial 13 Aug 82

Since models typically become quite -omplex, even in line-drawing form, there must be
some way to represent primitives in a simplified fashion while exercising the animator program.
For example, if spheres are represented by lines of longitude and latitude, then the number of
these lines might be reduced, or only dots might be used, or even just an enclosing box.

Smooth motion paths are best specified by passing splines (piecewise cubic polynomials here)
through keyframe parameters. The two most useful splines currently known are the B-spline and
the Catmull-Rom spline+. Both of these are cubic splines with local control. That is, a change in
a keyframe parameter being splined affects the curve only at the frames between the given key-
frame and the two keyframes before and after the given keyframe. A change affects only four
keyframes of regardless of how many there are altogether. The B-spline is an approzimaling
spline and the Catmull-Rom spline is an interpolating spline. An approximating spline passes
near the parameter values at the keyframes (the "knot” values of the spline) but not necessarily
through them, but an interpolating spline is guaranteed to pass through them. The approximat-
ing spline tends to be more graceful than the interpolating spline because it preserves second-
order continuity. The interpolating spline may have undesired kinks in it.

These two splines are easily specified. Given a list of z-coordinates, and a parameter u
which will take us along the spline connecting (or approximately connecting) one coordinate z, to
the next z; as the parameter is varied from O to 1, a new z-coordinate is obtained from each
value of u from the four nearest given z-coordinates (two behind, two ahead, along the curve) by
UsM*XT, where ; !

U=[s*uv?u1],
X=[2_1202122],

and M is the "magic matrix”

-1 3-3 1

1 . 2 -5 4 -1

2 -1 0 1 O

0 2 0 O

for Catmull-Rom splines or

-1 331

1 36 30

573 0 30

1 4 10

for B-splines. The y-coordinates and z-coordinates of a given set of points to be interpolated
would be treated similarly, as would any other parameter to be smoothly interpolated through the -
animation - e.g., the angle of rotation about the z-axis.

1.3.2. Camera Animation

Animating the camera’s view of the objects or objects making up a synthetic scene is much
like the model animation discussed above. In fact, it can be combined with it, but I have broken
it out as a separate part of the animation process because it is usually thought of as an indepen-
dent process. The terminology tends to be different, for example. Whereas one tends to use com-
mands such as "rotate 30 degrees about x (y)” for animating a model, the related command to the
camera might be "rotate 30 degrees in elevation (azimuth)”.

The so-called viewing parameters” are placed under control for camera animation but are
typically set to some standard setting for model animation where the model changes but the cam-
era doesn’t budge. These parameters are relatc:l to the perspective transformtion applied to the

»The cubic Catmull-Rom spline is also called an Overhauser spline because of independent discovery. Both are
piecewise polynomial (i.e., spline) generalizations of the well-known Lagrange interpolants.

.__4_.



Notes 3-D Animation Tutorial 13 Aug 82

synthetic scene: field-of-view (which can cause fish-eye” lens distortions, if desired), near and far
clipping planes, aspect ratio (e.g., Panavision, Vistavision, or vidco frame shape).

It is convenient to provide users with several "cameras” so that a scene can be viewed from
several different vantage points. These different cameras may also be thought of as keyframes for
the camera animation. Another convenient tool is an oracle camera which views the scene with
the other cameras added to it. They might be represented, for example, by their viewing frus-
trums.

The animation of the path of the camera and any other parameters describing it is done
using B-splines or Catmull-Rom splines just as for models.

1.4. Modeling Interfaces

In all cases, the interface to the modeler (static, articulated, or animated) is of utmost
importance. There are very few successful interfaces, where success is measured by grace and
power. Grace in turn is measured by economy of motion, intuitiveness of control mechanisms,
and the "feel” of the actual, physical controls. For example, it is difficult to write an convenient
interface which allows a user to "attach this sphere at this point to that cone at that point”. It is
easy to write a program which assumes only one coordinate system - that attached to, and mov-
ing with, the object being constructed - but it is difficult to write one that references the fixed
screen coordinate system, or allows the user to go back and forth between both systems as ease
dictates. :

A class of modelers which are particularly difficult to interface are the patch design systems.
Patches - and, particularly, rational bicubic patches - have many degrees of freedom. They
obtain their power from this freedom. The most promising technique for interaction with these
modeling primitives (or any primitives, actually) is via stereo pairs of 3-D line drawings. No such
system is currently in use. The "head-mounted display” of the University of Utah was the most
serious attack which has been made on this problem.

2. Rendering

After a set of models has been digitized or synthesized, combined into scenes, and animated,
we presumably have a set of frames in some conventional 3-D database format which then has to
be rendered frame-by-frame into final 2-D form in full color with all hidden surfaces removed.

One of the most powerful tricks used in computer graphics is that of tezture mapping. This
is the wrapping of a 2-D picture - painted, scanned in, or algorithmicly generated - onto a 3-D
surface to give it much more detail than the modeling process feasibly admits. I include in the
Rendering section of this tutorial the generation of the texture maps used for this process since
this is basically a color surface problem and not a black-and-white 3-D object definition problem.
This leads naturally to a subdivision of the Rendering domain into the intringically 2-D and int-
rinsically 3-D coloring problems. :

2.1. 2-Dimensional Problems

2.1.1. Texture Generation

The richest source of readily available imagery for simulated scenes is the real world. Since
it is generally difficult to model the real world with anything like its complexity, synthetic models
are enriched by texture mapping 2-D digitized real-world scenes onto their surfaces. 2-D input
scanning is simpler than 3-D - it requires only one camera, no triangulation, and cheaper equip-
ment - but it suffers from some of the same problems. Noise is the principal problem. Some of
this can be removed by a flat-field correction accomplished by scanning in a white sheet of paper,
or, in the case of transparencies, scanning in an empty aperture and multiplying it times the

"desired image pixel-by-pixel. Various filters for edge sharpening and contrast enhancement may
also be used.

_5_



Notes 3-D Animation Tutorial 13 Aug 82

Another source of textures are the so-called paint” programs which allow an artist to paint
into a computer memory in such a way as to feel as if he were painting directly onto a color video
monitor. These programs may be quite elaborate. In fact, a full paint program is really a system
of programs. Such a system typically includes basic (simulation of) painting, ﬁllix/zg of areas of
arbitrary shape, line and curve drawing aides, picture saving and restoring, magnification, cursor-
ing, color palette setup, and brush definition programs. Some paint stations include 2-D input
scanning also. There are now several commercially available paint stations: ”Superpaint” from
Aurora Systems Inc. in San Francisco, "Images” from the Computer Graphics Lab Inc. in New
York, and "Paintbox™ by Quantel in Great Britain, to name a few. The most sophisticated such’
program has recently been written by Tom Porter at Lucasflm. -

The third technique of texture definition is algorithmic. This is, of course, as general as can
be imagined in the context of computer programming. For example, a program which generates
z as a function of z and y and represents z with shades of a color, or different colors, is a power-
ful source of often intriguing patterns for texture-mapping.

It is usual that a texture is stored in a computer as a set of samples taken at equally spaced
values of z and y. Textures may go through quite large scale changes in the mapping process
onto 3-D surfaces. Theoretically it is possible to reconstruct a set of samples, make a change of
scale on the reconstruction, and resample with no loss of information. Practically, however, this
is done only approximately so as not to take too long computationally. One speedup technique is
to prescale a texture which may go through many scale changes in an animated sequence. The
prescaling is typically done to powers of two. That is, the texture is prescaled by factors of 2, 4,
8, .., and 1/2,1/4, 1/8, ... Then when a scale change is required the texture already nearest in
size i used for the slow, final mapping. This technique was first described by Ed Catmull at the
University of Utah many years ago and has been refined into the mipmap technique by Lance
Williams of New York Institute Technology. It was also used by Tom Duff at Lucasfilm in the
”Genesis Demo” sequence in Star Trek II.

The mechanics of assigning textures to surfaces is a large problem in itself which has
nowhere yet been adequately solved. The Earth-like planet in the Genesis Demo sequence was
created by painting a texture with the Lucasfilm paint program (Chris Evans did the painting).
Then Tom Duff mapped this texture onto a sphere for the finished planet. Spheres are one kind
of surface for which the texture assignment problem has been solved.

2.1.2. Matting

Another 2-D color rendering problem is that of compositing several 2-D pictures into a single
final frame. Since interesting scenes tend to be complex, they are typically broken into several
elements. For example, in the Genesis Demo sequence every frame is composed from two to five
elements. A frame showing a projectile impacting a planet surface has a starfield element, a
planet element, an explosion element, and a shockwave element. Each of these is the final result
of a 3-D rendering problem, but none is a complete frame. A final 2-D matling, or compositing,
step is applied to combine the elements. This is straightforward because a soft-edged matte is
generated with each element as part of the 3-D rendering process.

A matte is simply a picture which is 0 wherever another picture of the same size is to be
transparent, 1 where it is to be opaque, and a fraction between 0 and 1 for corresponding partial
transparency. Let a be a color from picture A and b be a color from picture B. A is to be
placed over B with g registered over b. Let a be the partial transparency of pixel a - ie., ais
the pixel in the matte for A which is in registration with pixel a. The operator for combining the
two pictures according to the given matte is used so often in computer graphics that it has a spe-
cial name, lerp, short for "linear interpolation”. Lerp is defined to be the pixel-by-pixel operation

a+*A + (1-a)*B = B + a+#(B-A).

That is, it is the linear interpolation of B to A by amount a known to be between 0 (transparent)
and 1 (opaque). '

._6__



Notes 3-D Animation Tutorial 13 Aug 82

Matting is one way of partitioning a scene so that hidden surface removal becomes simple.
The more general and difficult problem of hidden surfaces in 3-D is covered in the next section.

2.2. 3-Dimensional Problems

The amount of space I have alloted per section in this tutorial is roughly a measure of the
importance of the contents of a section in the overall process of 3-D computer animation. I say
this because the 3-D problems discussed in this section tend to be the focus of computer graphics.
This is because they are the most difficult problems, requiring the most sophisticated algorithms
and using the largest number of computer cycles, of all those in a full 3-D animation system.
Nevertheless, they are just part of the final picture.

2.2.1. Hidden Surface Removal

In general, the removal of hidden surfaces from a synthetic scene cannot be solved with sim-
ple tricks such as 2-D matting of elements discussed above. Consider a complex scene which has
been animated and is ready for rendering into a frame. Assume this scene is of complexity
approaching that of the real world and that it is to be rendered at film resolution. No one has yet
decided what the optimal film resolution for digital pictures is, but it is safe to say that there will
be millions of pixels involved (with the range being anywhere from 1 to 64 million).. Further
assume that all primitives used in the modeling stage are subdivided into polygons for this render-
ing stage. This is not necessarily the case but it is done often enough to make our example rea-
sonable. So each leaf, car, face, blade of grass, rock, river, etc. is subdivided sufficiently so as to
show no sampling eflects. By looking around in the real world, it is apparent that depth complex-
ity, the number of surfaces crossed by a straight line from the eye to infinity, is something
between 10 and 100 typically. So we are talking about potentially many millions of polygons of
arbitrary shape and orientation stacked about, say 20, deep at any one pixel. The analysis of
which surfaces hide which in this scenario is to be solved for every frame! A movie has 100,000 to
150,000 frames so it is easy to see just how computationally intensive fully realized 3-D computer
animation may be and why so much work has been, and still is, put into finding algorithms for
solving the hidden surface problem.

I will not attempt to analyse the problem fully here but just indicate some of the major
approaches. There are many tricks for reducing the complexity of a scene before the brute-force
hidden-surface algorithms are put to work. One is the matting decomposition already discussed.
This is just a special case of what is called clustering, or breaking a scene into modules which can
be treated completely independently of one another.

A process of culling may quickly reduce the "environment” of objects which have to be con-
sidered in a frame. This is simply the removal from the working database of all objects which are
clearly offscreen or behind the camera.

The use of coherence can greatly reduce the amount of computation. Coherence is a meas-
ure of how much a frame is like the one just solved, or how much a scanline is like the one just
processed, etc. In other words, many algorithms are sped up by noticing when a computation is
to be performed again and saving the current result for that later time. There are many different
types of coherence which may be exploited.

In the brief summary of the major hidden-surface solution techniques below I will use the
terms object space and image space frequently. Object space is the coordinate system used for
modeling the scene, or perhaps a translation-rotation of that system into a more convenient one
such as a coordinate-system based at the camera. It is in any case, a 3-D space with no perspec-
tive for describing the modeled scene with real numbers and continuous curves (at least to within
the floating-point accuracy of a computer). Image space is the coordinate system of the plane in
which the final image of the model is projected. It implies perspective projection and representa-
tion of the projected model by numbers at or near the resolution of the display (integer represen-
tation may even be used in a computer). Although the image is 2-D, a third dimension obtained
from the perspective projection is kept for depth comparisons.

-7 —



Notes : 3-D Animation Tutorial 13 Aug 82

2.2.1.1. Ray Tracing

Some of the most beautiful computer graphics pictures so far obtained have used ray lracing
algorithms for hidden-surface detection and removal. The idea is to follow all the rays of light
emitted from light sources in a modeled scene through all their reflections and refractions by
objects in the scene until they strike the image plane and then the eye or camera. Thus the laws
of optics are applied faithfully. For computational purposes, these rays are traced in the reverse
direction, from the eye to the emitting source. Since a ray can bounce off any object in the
modeled scene, the scene cannot be culled. For example, a mirrored sphere in the camera’s view
may reflect what is behind the camera - and the camera. This type of algorithm is performed in
object space, tends to be slow, and makes neighborhood integration for antialiasing filters difficult
(see section on Antialiasing below), but it provides shadows and handles transparency well. It can
be used for any surface primitive for which intersection with a ray can be solved. Essentially, a
new hidden-surface problem has to be solved every time a ray bounces off an object, so the prob-
lem is recursively difficult.

2.2.1.2. Depth Buffer

A very simple hidden-surface solution uses a large piece of memory called a Z buffer, or
depth buffer. A Z buffer has one location for each pixel in the final image, so this type of algo-
rithm is intrinsically an image space algorithm. A pixel portion of a surface in a scene is written
into the final image only if its z-coordinate is less than that stored in the Z bufler at that point.
(It is fairly common practice in computer graphics to use an image space coordinate system with
z horizontal, y vertical, and z increasing into the screen away from the viewer.) If the new pixel
hides the old, then its z value replaces that of the old pixel in the Z buffer.

The benefits of this approach are: No ordering of the environment is required - i.e., no sort-
ing is required. Several different programs can be used to generate objects independently which
can then be resolved in depth with one Z-buffer pass. The method is not based on any one kind
of primitive. The program is very simple to write.

The approach fails to properly render transparency, and it does not support antialiasing nor
shadowing. However, Lance Williams of NYIT has a method of approximately antialiasing a Z-
buffered picture and has shown how two uses of the Z-buffer - one for the viewer and one for the
light source - can be used for shadows.

2.2.1.3. Sorting and Clipping

The majority of algorithms which have been devised for hidden-surface resolution are
-polygon based. There have been perhaps twenty to thirty such algorithms devised so far which
differ by the order of the sort performed, the type of coherence exploited, and whether image
space or object space is used.

A typical example of this type algorithm assumes a culled database which has been sorted
in order of the maximum y for each polygon. Now the data space is subdivided for further sort-
ing. For example, it may be divided into scanlines - that is, into horizontal slices which are to be
resolved into one horizontal scanline of a display device or medium. In such scanline oriented
algorithms the polygons which intersect the given scanline, defined by a plane passing through the
scanline and the viewpoint, are further sorted on their minimum z coordinates. Then a variety of
depth sorting techniques are used to make the final resolution. Since depth information may
change only slightly from scanline to scanline, information on one line may be used to simplify
computations on the next. This is an example of the use of coherence.

Another way to subdivide the space for further sorting is by dividing the image plane into a
grid of squares and solving within the squares. The database of polygons is clipped against the
current square of interest to subdivide polygons into subpolygons with new edges coinciding with
the current square’s edge. A square which is particularly difficult to solve may be further subdi-
vided into smaller squares before final resolution is attempted. Some algorithms use polygons in
the scene to clip against rather than an arbitrary grid of squares.



Notes 3-D Animation Tutorial 13 Aug 82

Some of these algorithms handle shadows, others do not. Some handle transparency, others
don’t. Most can be made to deal appropriately with antialiasing. They are sort intensive and
tend to bog down for large numbers of polygons (millions). Some are plagued by a rapid increase
in the number of subpolygons generated at intermediate steps, and others by the extreme shapes
these subpolygons may take (slivers). In all cases, they are not designed to solve the optics prob-
lems solved by the ray-tracing algorithms. They essentially handle only one bounce of 2 ray.

2.2.2. Coloring

After the hidden-surface problem has been resolved, there still remains the actually render-
ing of color at each pixel in the visible surfaces, which may be only transparently visible. We dis-
cuss here the many factors that may be used for determining the color at a pixel.

2.2.2.1. Lighting Models

An environment may include several light sources each of which affects the color of an
object, either directly or by shadowing or by filtering through partially transparent objects or par-
tially reflective objects. A light source may be local and distributed over space or it may reside at
a point at infinity. It may be in the scene viewed or off-camera. It may be colored. Simple com-
puter graphics tends to use one white light source located at infinity and out of camera range.

A typical model for illumination by a light source will have a specular component, a diffuse
component, and an ambient component. The specular component is that seen when the
viewpoint is at or near the point where the angle of reflectance of a light ray from a surface is
equal the angle of incidence. It dominates on shiny surfaces. The diffuse component is more uni-
formly distributed over an illuminated surface and dominates on matte surfaces. The ambient
component is a constant term added in to raise black to a low gray. It captures the notion of a
low background glow due to many reflections of ‘many low-level light sources. All the lighting
models substitute approximating terms for what would require very complex integrations for truly
accurate modeling.

One common approximation which should, however, be avoided for good color renditions is
that which gives the specular, diffuse, and ambient components the color of the light source. Real
objects modify these three components in three different ways. For example, metals have specu-
lar highlights colored by the metal not the light source (and almost no diffuse component). Strik-
ing improvements in computer graphics scenes are obtained by the simple measure of using better
lighting models.

2.2.2.2. Texture Mapping

As has already been mentioned, a great amount of complexity may be apparently added to
a synthetic scene by mapping a 2-D picture, or "texture”, onto a 3-D surface. The logistics of
doing this mapping may be one of the most difficult parts of a 3-D animation exercise. Textures
tend to require large amounts of disk space. Since disks are as yet relatively slow devices, it is
important to have texturing algorithms which minimize disk accesses.

2.2.2.3. Bump Mapping

A simple and very powerful way of adding further complexity to a scene is based on the
same principle as is texture mapping. This principle is that if the amplitude of the detail is small
relative the amplitude of the object with the detail, then a satisfactory approximation is obtained
by reducing the detail amplitude to zero - i.e., by using a 2-D representation of the detail. Most
lighting models vary the shade of an object as a function of the normal to the surface of the
model. Bump mapping, or normal perturbation, simulates wrinkles and bumps of low amplitude in
a surface by appropriately wiggling the surface normal in the vicinity of the bumps and wrinkles
as if they really existed in the model. Only at the silhouette of the object is the secret given
away - there are no bumps or wrinkles actually visible - but with enough complexity viewers
tend to ignore this fact.

_.9,._



Notes 3-D Animation Tutorial 13 Aug 82

2.2.2.4. Environment Mapping

An alternative to ray-tracing is what is sometimes called environment mapping. If an object
does not move with respect to its environment, then a texture map may be computed which takes
optics fully into account. When this texture is mapped onto the surface at rendering time, the
effect is the same as if ray-tracing had been performed. In fact, it bas, but only once, not for
every frame.

2.2.3. Antialiasing

I have mentioned antialiasing several times in this tutorial. It is one of the most important
topics in computer graphics and one still not fully understood by the community of graphics
users. Unfortunately, it is much simpler to ignore antialiasing when writing a rendering program
than to think it out and include it. As we have seen, some algorithms do not even allow incor-
poration of antialiasing. These will fall away as the importance of antialiasing becomes widely
known.

Aliasing is most often seen as "stairsteps” or “jaggies” in computer-generated frames. In
motion, these jagged edges run along the edge destroying the illusion that it is the edge of a hard
object. Other manifestations of aliasing are polygons that flash on and off, moire patterns, and
"strobing”™ or temporal aliasing.

2.2.3.1. Spatial

Aliasing is a sampling problem. Computer graphics typically uses samples of real surfaces
rather than continuous surfaces. This is because the surface is eventually displayed in a pixelated
form which is equivalent to saying a pixel is a sample of a continuous surface. Sampling theory
says that samples are good enough for representation of a continuous surface if there are no direc-
tion changes in the surface within the distance between pixels or samples. A stricter way of say-
ing this is that the sampled surface should have no frequencies, in the Fourier sense, of higher
spatial frequency than the sampling grid. Unfortunately, polygons, which are very frequently
used in computer graphics, have very high frequencies near their edges. Some kind of local filter-
ing or averaging must be performed to rid the surface of these high frequencies else they will
appear as ragged edges in a sampled display.

2.2.3.2. Temporal

A movie is a set of samples taken at 24 or 30 times per second of a 3-D event, where one of
the dimensions is time. Just as in the spatial case, aliasing will occur if motion changes occur
with higher frequency than 24 or 30 times per second. The solution for time is called motion blur.
Unfortunately, motion blur is at this time usually omitted from computer graphics, it being a
difficult problem to solve. However, the stars and fires in the Lucasfilm Star Trek II sequence
were motion blurred to prevent strobing in time.

3. Managing

A subject which I will not treat is that of primary importance, the original creativity, the
creation of the story, characters, look, colors, composition, etq. A subject which will receive less
coverage here than probably it should, taking back seat to the more glamorous aspects of com-
puter animation, modeling and rendering, is that of management and logistics. It becomes very
apparent, however, in any real computer animation that the management of resources - disks,
magtapes, cpus, people, film units, painting stations, etc. - may create a severe bottleneck unless
properly thought out. In fact, one of the principal uses of the computer in computer animation is
the management of these resources.

An ezposure sheet is commonly used to specify what elements and what backgrounds go into
an animated sequence, frame-by-frame. The exposure sheet contains information about composit-
ing and camera or videotape control (advance, skip, reverse, etc.) Facilities for exposure sheet

generation and maintainance are mandatory and can become surprisingly complex. For example,



Notes ' 3-D Animation Tutorial A 13 Aug 82

mistakes always happen. It is important that any exposure sheet facility allow easy recovery in
case of error. With complex relationships between elements and where they are stored, this can
be very difficult and lead to further errors in the recording.

References

Rather than directly cite the many articles from which the.information above is distilled, I

have opted to list a body of books and conference proceedings which include most of what may be
found in the literature, or at least give pointers into the literature.

[1]

[2]
(3l
[4
[5]
[6]
7]
(8]

SIGGRAPH Proceedings, 1977-82. [The Special Interest Group on Computer Graphics, of
the ACM (Association for Computing Machinery), holds an annual convention, usually in
July or August, and issues a proceedings of the papers presented.]

Barnhill, Robert E., and Riesenfeld, Richard F. Computer Aided Gcomctnc Design,
Academic Press, Inc., San Francisco, 1974.

Beatty, John C., and Booth, Kellogg S. Tutorial: Computer Graphics, IEEE Computer
Society, New York, 1982. (Second Edition).

Faux, ILD., and Pratt, M.J. Computational Geometry for Design and Manufacture, John
Wiley & Sons, New York, 1979.

Freeman, Herbert. Tutorial and Selected Readings in Interactive Computer Graphics, IEEE
Computer Society, New York, 1980.

Foley, J.D., and Van Dam, A. Fundamentals of Interactive Computer Graphics, Addison-
Wesley, Menlo Park, Cahforma 1982,

Newman, William M., and Sproull, Robert F. Principles of Interactive Computer Graphics,
McGraw-Hill, San Francisco, 1979. (Second Edition).

Rogers, David F., and Adams, J. Alan. Mathematical Elements for Computer Graphics,
McGraw-Hill, San Francisco, 1976.

—11 -



