
33--DD TTrraannssffoorrmmaattiioonnss ooff IImmaaggeess iinn SSccaannlliinnee OOrrddeerr
Ed Catmull and Alvy Ray Smith

Lucasfilm Ltd.
P.O. Box 7

San Anselmo, CA 94960

Published in: SIGGRAPH ’80 Conference Proceedings, Jul 14-18, 1980, Seattle, WA, edited by
James J. Thomas, 279-285. This document was reentered by Alvy Ray Smith in Microsoft Word
form on Mar 24, 1999. Spelling and punctuation are generally preserved, but trivially minor spell-
ing errors are corrected. Otherwise additions or changes made to the original are noted inside
square brackets. The following note accompanies the original document:

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.

©1980 ACM 0-89791-021-4/80/0700-0279 $00.75

Abstract
Currently texture mapping onto projections of 3-D surfaces is time consum-

ing and subject to considerable aliasing errors. Usually the procedure is to per-
form some inverse mapping from the area of the pixel onto the surface texture. It
is difficult to do this correctly. There is an alternate approach where the texture
surface is transformed as a 2-D image until it conforms to a projection of a poly-
gon placed arbitrarily in 3-space. The great advantage of this approach is that the
2-D transformation can be decomposed into two simple transforms, one in hori-
zontal and the other in vertical scanline order. Sophisticated light calculation is
also time consuming and difficult to calculate correctly on projected polygons.
Instead of calculating the lighting based on the position of the polygon, lights,
and eye, the lights and eye can be transformed to a corresponding position for a
unit square which we can consider to be a canonical polygon. After this canonical
polygon is correctly textured and shaded it can be easily conformed to the projec-
tion of the 3-D surface.

KEY WORDS AND PHRASES: texture mapping, scanline, algorithm, spatial trans-
forms, 2-pass algorithm, stream processor, warping, bottleneck, foldover

CR CATEGORY: 8.2

Introduction
Texture mapping is an immensely powerful idea now being exploited in

computer graphics. It was first developed by one of the authors [2] and extended
by Blinn [1] who produced some startling pictures. In this paper we present a

3-D Transformations of Images in Scanline Order 2

new approach to texture mapping that is potentially much faster than previous
techniques and has fewer problems.

The two chief difficulties have been aliasing and the time it takes to do the
transformation of a picture onto the projection of some patch. Usually the proce-
dure is to perform some inverse mapping of a pixel onto a surface texture (Fig.
1). It is difficult to do this correctly because the inverse mapping does not happen
in scanline order and also because we must integrate under the whole inverse
image in order to prevent sampling errors.

We present in this paper an approach that does the mapping in scanline or-
der both in scanning the texture map and in producing the projected image.
Processing pixels in scanline order allows us to specify hardware that may work
at video rates. We emphasize, however, that the approach is valuable for soft-
ware as well as hardware implementations.

One of the key concepts we use is that of a “stream processor”. Pixels enter
the stream processor at video rate, are modified or merged in some way with an-
other incoming stream of pixels and then sent to the output (Fig. 2). This concept
has been implemented by several manufacturers for image processing. A gener-
alization of the concept would be to allow the framebuffers to feed the streams in
either horizontal or vertical scanline order.

We will show here that the class of transformations that can be applied to
streams is much broader than previously believed. For example, an image in a
framebuffer may be rotated by some arbitrary angle even though the data is sent
through the processor in scanline order only. While this concept has been known
for some time [3, 4], we show here that the technique can be generalized to per-
spective projections. Further generalizations include quadric and bivariate
curved surfaces. The ability to transform a whole raster image very quickly lets
us consider doing shading calculations on a unit square where the calculations
may be more amenable to stream processing and then transforming the results.

When we say “scanline order”, we use a slightly broader meaning than nor-
mal. Usually this means that the order of the pixels is from left to right across a
scanline and that the scanlines come in top to bottom order. We broaden the
definition to include vertical scanline order. In addition, the scanlines may also
occur in bottom to top or right to left order. This gives us trivially a 90 degree ro-
tate and flopping a picture over in one pass through the picture.

Example: Simple Rotation
For illustration, we present the simple case of rotation. We would like to ro-

tate an entire image in the framebuffer. The rotation matrix is:

[] c s x
x y

s c y

−
′ ′ =

where x and y refer to coordinates in the original picture and x’, y’ are the new
coordinates (c = cos, s = sin).

3-D Transformations of Images in Scanline Order 3

We want to transform every pixel in the original picture. If we hold y con-
stant and move along x then we are transforming the data in scanline order but
the results are not coming out in scanline order. Not only is this inconvenient, it
is also difficult to prevent aliasing errors.

There is an alternate method for transforming all of the pixels, and that is to
evaluate only the x’ of the first pass and then the y’ in a second pass.

So again hold y constant, but just evaluate x’:
[] []x y cx sy y′ = − .

We now have a picture that has been skewed and scaled in the x direction, but
every pixel has its original y value. See Fig. 4, where Fig. 4a is the original picture
and Fig. 4b is after the horizontal scanline computation.

Next we can transform the intermediate picture by holding x’ constant and
calculating y. Unfortunately, the equation y sx cy′ = + can’t be used because the x
value for that vertical scanline is not the right one for the equation. So let us in-
vert x’ to get the correct x. we need x in terms of x’.

Recall x cx sy′ = − , so
x sy

x
c c

′
= + .

Plug this into y sx cy′ = + to get:
sx y

y
c

′ +′ = .

Now we transform the y value of the pixels in the intermediate picture in
vertical scanline order to get the final picture, Fig. 4c.

The first pass went in horizontal scanline order on input and output. The
second was vertical in both. So in two passes the entire picture was rotated.

Before we generalize, two points should be noted.

(1) A 90 degree rotate would cause the intermediate picture to collapse to a line.
It would be better to read the scanlines horizontally from the source buffer
and write them vertically to effect that rotate. It follows that an 80 degree ro-
tate should be performed by first rotating 90 degrees as noted then by –10
degrees using the 2-pass algorithm.

(2) The rate at which pixels are read from the input buffer is generally different
than the rate at which they are sent to the output buffer. If we’re not careful
we could get sampling problems. However, since all of the pixels pass
through the processor, it is not difficult to filter and integrate the incoming
values to get an output value.

Next we generalize to:
[] [](,) (,)x y X x y Y x y′ ′ = .

This generalization will include perspective. Whatever the transformation is, we
shall show that we can do the x transforms first, followed by the y transforms,
but in order to do the transforms we must be able to find the inverse of x’. This

3-D Transformations of Images in Scanline Order 4

may be very difficult to do and x’ may even have multiple values. So we present
first a more formal way of talking about the method before addressing some of
the difficulties.

The 2-Pass Technique
We are interested in mapping the 2-D region bounded by a unit square into a

3-D surface which is projected back into 2-D for final viewing. Since the unit
square (by which we mean the enclosed points also) may be represented by point
samples in a digital framebuffer, and since a framebuffer is typically arranged in
rows and columns, we are interested in row-ordered or column-ordered imple-
mentations of these mappings. The technique we now present is a means of de-
composing a 2-D mapping into a succession of two 1-D mappings, or scanline-
ordered mappings, where a scanline may be either horizontal (a row) or vertical
(a column). The technique is quite general as we shall show subsequently.

This figure illustrates the 2-pass technique:

We want to map the set of points { }(,) : 0 1,0 1u v u v< < < < in the unit square into

the set { }(,)x y′ ′ where the desired mapping is given as an arbitrary pair of func-
tions

(,)

(,)

x l u v

y r u v

′ =
′ =

We wish to replace this pair of functions with the pair
()

()

x f u

y g v

′ =
′ =

where it is understood that ()f u is applied to all points in the unit square before
()g v is applied to any of them. We call the application of f the h-pass (for hori-

zontal) and the application of g the v-pass (for vertical).
In general, there will be a different ()f u for each value of v, so f might be

thought of as a function of (u, v). We prefer however to think of v as a parameter
which selects a particular ()f u to be applied to all u on scanline v. To emphasize
when v is being held constant like this, we will use the notation v% . Thus v% is an
index into a table of horizontal mappings. Similarly, there will in general be a dif-
ferent ()g v for each vertical scanline x’ (where the prime indicates that the h-pass

. (x’,v) (u,v) .

. (x’,y’)

g(v)

f(u)

l(u,v),
r(u,v)

3-D Transformations of Images in Scanline Order 5

has already occurred). We will use the notation x′% to indicate a given vertical
scanline just prior to the v-pass.

In this section, we will always have the v-pass follow the h-pass. This is just a
convenience. The decomposition into the other order proceeds similarly, and we
will have occasion to choose one order over the other in a later section.

An algorithm for the decomposition of l, r into f, g is the following:

(1) () (,)f u l u v= % is the function f for scanline v% .

(2) Solve the equation (,) 0l u v x′− =% for u to obtain ()u h v= for scanline x′% .

(3) () ((),)g v r h v v= is the function g for scanline x′% .

We simply take ()f u as defined in (1) and show that ()g v in (3) is consistent
with it. The h-pass takes the set of points { }(,)u v into the set { }(,)x v′ . We desire a
function which may be applied at this time to scanline x′% . But being given x′% is
equivalent to being given the equation

(,)x l u v′ =% .
If this equation can be rearranged to have the form ()u h v= , then ((),)r h v v is a
function of v only and is the desired g.

Thus solving the equation (,) 0l u v x′− =% for u is the key to the technique. We
shall show some cases where this is simple, but in general it is not. An iterative
solution such as provided by Newton-Raphson iteration could be used but is ex-
pensive. We shall treat these problems in the following sections.

It should be noted that we have placed no restrictions on functions l, r. So the
2-pass technique can be applied to a large class of picture transformations and
distortions, only a few examples of which will be presented here. In particular,
we henceforth restrict our attention to ratios of polynomials.

We shall illustrate the 2-pass technique by applying it, in detail, to the case of
a rectangle undergoing affine transformations followed by a perspective trans-
formation and projection into 2-space. Then, in less detail, we will treat bilinear
and biquadratic patches under the same type of transformation. This should
serve to indicate how the method can be extended to higher degree surfaces.

The Simple Rectangle
Consider the (trivial) parametric representation of a rectangle given by

(,)x u v u= , (,)y u v v= , (,) 0z u v = , (,) 1w u v = . The class of transformations we ap-
ply are exactly those which can be represented by a 4x4 matrix multiplying a 3-
space vector represented in homogeneous coordinates as indicated below:

[] []

a e i m

b f j n
x y z w x y z w

c g k o

d h l p

 ′′ ′′ ′′ ′′=

.

3-D Transformations of Images in Scanline Order 6

Then projection into 2-space is accomplished by dividing through the homoge-
neous coordinate w”:

[] x y z
x y z

w w w
′′ ′′ ′′ ′ ′ ′ = ′′ ′′ ′′

Replacing x, y, z, and w with their parametric forms and expanding the equations
above gives

(,)

(,)

au bv d
x l u v

mu nv p

eu fv h
y r u v

mu nv p

+ +′ = =
+ +
+ +′ = =
+ +

.

We are interested in the 2-D projection only so we shall ignore z’ from here on.
The functions l, r in this case represent an ordinary linear transformation of

the unit square, followed by a perspective projection. Notice that they are both
rational linear polynomials—i.e., a linear polynomial divided by a linear poly-
nomial.

Applying the 2-pass algorithm to the functions l, r gives:

(1) The h-pass function for scanline v% is

()
Au B

f u
Cu D

+
=

+

where A a= , B bv d= +% , C m= , D nv p= +% .

(2) ()u h v= is obtained by solving
au bv d

x
mu nv p

+ +′ =
+ +

%

for u:
u Ev F= +

where b nx
E

mx a

′−
=

′ −
%

% and d px
F

mx a

′−
=

′ −
%

% .

(3) Thus
()

()
()

e Ev F fv h Gv H
g v

m Ev F nv p Iv J
+ + + +

= =
+ + + +

is the v-pass function for scanline x′% , where G f eE= + , H h eF= + ,
I n mE= + , J p mF= + .

Fig. 5 shows the results of applying this f, g pair. Fig. 5a is the original rec-
tangular texture. Fig. 5b is its appearance after the h-pass, and Fig. 5c is the result
of the v-pass.

Following are several points about this computation:

(1) The sampled image (Fig. 5a) was reconstructed with a first-order filter (the
so-called Bartlett window) then resampled with a zeroth-order filter (the
Fourier window). This is only minimal use of sampling theory. A piece of

3-D Transformations of Images in Scanline Order 7

hardware or software for production quality work would certainly employ
more sophisticated filtering. Our figures look surprisingly nice despite use of
the low-order filters mentioned above. (The edges are not antialiased, how-
ever.)

(2) Clipping is natural. The f function generates the final value of x’. If this value
should fall outside the limits of the output buffer then it does so with no loss.
The g function, which operates only on the scanlines output by f, will never
need values clipped in the h-pass.

(3) The 2-pass technique does not avoid the ordinary problems of perspective
projections. For example, the transformation can blow up if the denominator
of either f or g goes to zero. This corresponds to the usual problem of wrap-
around through infinity and requires the normal solution of clipping before
transformation.

(4) There is a problem introduced by the 2-pass technique not encountered be-
fore. This is what we call the “bottleneck problem”. We shall discuss this in
greater detail and offer a solution to it in the next section, then return to the
examples.

Bottleneck
With the perspective transformation we have a problem analogous to that of

the 90 degree rotate, that is, it is possible to have an intermediate picture col-
lapse. In the case of rotation the solution was simple: rotate the texture 90 de-
grees and change the transformation by that amount. The solution for the per-
spective case is the same, however it is more difficult to tell from the transforma-
tion matrix when a problem will occur.

We base our criteria on the area of the image in the intermediate picture.
There are four possible ways to generate an intermediate picture:

1. transform x first

2. transform y first

3. rotate 90 degrees and transform x first

4. rotate 90 degrees and transform y first

In each case the area is easily found by integrating the area between (0,)x y′
and (1,)x y′ where

ax by c
x

dx ey f
+ +′ =
+ +

and y varies from 0 to 1. This gives

ln 1 ln 1
e e

area K k
d f f

= + − + +

where 2

() ()ce bf ae bd
K

e
− + −

= , and 2

cd bf
k

e
−

= . We use the method that gives the

maximum intermediate area.

3-D Transformations of Images in Scanline Order 8

The Bilinear Patch
The preceding class of transformations of the rectangle does not generate all

quadrilaterals—e.g., nonplanar quadrilaterals. Since in general we cannot guar-
antee that all quadrilaterals are planar, we generalize to the bilinear patch.

The general bilinear patch (Fig. 3a) has a parametric representation

[] 00 01

10 11

(,) 1
1

a a v
x u v u

a a

=

where a x x x x00 3 2 1 0= − − −() () , 01 1 0a x x= − , 10 2 0a x x= − , 11 0a x= . There are similar
representations for (,)y u v , (,)z u v , and (,)w u v , where ijb , ijc , and ijd correspond
respectively to the ija for (,)x u v .

As in the preceding example we transform a bilinear patch with a 4x4 matrix
multiply followed by a projection into 2-space. Hence we shall again ignore z’
(but see discussion of foldover below). The transformation may be represented
by the following matrix equation:

[] []

a e i m

b f j n
x y z w x y z w

c g k o

d h l p

 ′′ ′′ ′′ ′′ = =

[] []
00 00 00 00

01 01 01 01

10 10 10 10

11 11 11 11

1 1

a b c d a e i m A E I M

a b c d b f j n B F J N
uv u v uv u v

a b c d c g k o C G K O

a b c d d h l p D H L P

 =

.

After the homogeneous divide

(,)

(,)

Auv Bu Cv D
x l u v

Muv Nu Ov P
Euv Fu Gv H

y r u v
Muv Nu Ov P

+ + +′ = =
+ + +
+ + +′ = =
+ + +

.

The 2-pass algorithm gives:

(1) ()
A u B

f u
C u D

′ ′+
=

′ ′+
 for scanline v% , where A Av B′ = +% , B Cv D′ = +% , C Mv N′ = +% ,

D Ov P′ = +% .
(2) For vertical scanline x′% , it can be shown that

2

2()
A v B v C

g v
D v E v F

′′ ′′ ′′+ +
=

′′ ′′ ′′+ +

where A EE GG′′ ′ ′= + , B EF FE GH HG′′ ′ ′ ′ ′= + + + , C FF HH′′ ′ ′= + , D′′ =
ME OG′ ′+ , E MF NE OH PG′′ ′ ′ ′ ′= + + + , F NF PH′′ ′ ′= + with E C Ox′ ′= − % ,
F D Px′ ′= − % , G Mx A′ ′= −% , H Nx B′ ′= −% .

3-D Transformations of Images in Scanline Order 9

Fig. 6 shows a planar bilinear patch representing the texture in Fig. 5a
twisted about its center point. For this particular example, the h-pass is the iden-
tity function ()f u u= and hence is not shown. Fig. 7 shows the h-pass and v-pass
for a nonplanar patch transformation. Note the foldover. Fig. 5a is the source tex-
ture again.

All of the considerations discussed for the simple rectangle apply here also.
In addition we have new problems introduced due to the higher complexity of
the surface. A bilinear patch may be nonplanar, so from some views it may be
double valued. That is, a line from the viewpoint through the surface may inter-
sect the surface twice. In terms of the scanline functions, ()g v can map scanline
x′% back over [itself.] We call this problem “foldover”. It occurs at a silhouette
edge of the projected surface. The solution is to compute z’ for 0v = and for 1v = .
The endpoint of scanline x′% which maps into the z’ farthest from the [viewpoint]
is transformed first, so that later points overwrite points that would be obscured
anyway. For antialiasing purposes, the location of the foldover point must be
remembered and an appropriate weight computed for combining the pixel there
with a background.

The Biquadratic Patch
The highest order patch we shall discuss here is the biquadratic patch (Fig.

3b). It is particularly interesting because surface patches on quadric surfaces (e.g.,
ellipsoids) may be represented as biquadratic patches. The parametric equation
of x for a biquadratic patch has form

2
00 01 02

2
10 11 12

20 21 22

(,) 1
1

a a a v

x u v u u a a a v
a a a

 =

and similarly for (,)y u v , (),z u v , and (),w u v .

[]

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3
2 2 2 2 2 2

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

8 8 8 8

1

a b c d

a b c d

a b c d

a b c d

x y z w u v u v u uv uv u v v a b c d

a b c d

a b c d

a b c d

a b c d

 ′′ ′′ ′′ ′′ =

.

It can be shown, in a manner analogous to that used for the bilinear patch,
that ()f u is a ratio of quadratic polynomials and ()g v is a ratio of 4th-degree
polynomials. Actually there are two v-pass functions—say ()ig v , 0i = or 1—one
corresponding to each of two solutions of a quadratic equation encountered in

3-D Transformations of Images in Scanline Order 10

the derivation. The fact that there are two v-pass functions requires an explana-
tion. We now turn to this and other considerations which have been added be-
cause of the introduction of higher degree surfaces.

First, we present a technique for reducing ()ig v from a ratio of 4th-degree
forms to a rational quadratic polynomial like ()f u . Presumably we could im-
plement the ()ig v as they stand. However, besides being computationally nasty,
they are difficult to interpret and hence hide many pitfalls. For example, the
foldover problem discussed in the bilinear case could occur three times in a
scanline with attendant antialiasing problems. We prefer to introduce a method
which, at the cost of more memory, greatly reduces the complexity of the ()ig v . It
can also be applied to the simple rectangle and bilinear patch. Its utility comes
however in extending the methods of this paper to higher degree—e.g., to the
transformation of bicubic patches in perspective—which we reserve for a future
paper.

The notion is that during the h-pass we have already computed the u’s which
we need in the v-pass. It is the recomputation of these u’s (step (2) in the 2-pass
algorithm) which makes the v-pass more difficult than the h-pass. We propose a
high-precision framebuffer (e.g., 16 bits per pixel) to hold the u’s as they are
computed during the h-pass. Thus, if ju maps into jx′ under ()f u , then at loca-
tion jx′ in one framebuffer we store the intensity computed from the neighbor-
hood of ju in the source picture and in another framebuffer (the one with higher
precision) the value ju itself. Then during the v-pass on scanline jx′% , we merely
lookup in the extra framebuffer the value of ju mapped by the h-pass into the
current pixel, say (,)jx y′% , on the vertical scanline. It will be the ju at (,)jx y′% in the
extra framebuffer.

A difficulty which arises is that the h-pass function ()f u can cause a fold-
over on horizontal scanlines. This means that the intensity computed at location

jx′ is a function of one of two different ju ’s. Our solution is to have two auxiliary
location framebuffers and one additional intensity framebuffer. During the h-
pass a scanline is computed in an order where the deepest points are generated
first, as discussed in the bilinear case. As each ju is determined, it is written into
only one of the location framebuffers and the corresponding intensity is written
into one of the intensity framebuffers only. This occurs until the ju correspond-
ing to the point of foldover occurs. From this point on all ju ’s are stored in only
the other location framebuffer and the corresponding intensities in the other in-
tensity framebuffer. The final image is a combination of the two intensity frame-
buffers. In general, we believe this to be a difficult hidden surface problem and
do not treat it further here.

3-D Transformations of Images in Scanline Order 11

The simplification produced by the addition of the three extra framebuffers
reduces the ()ig v to

2
0 1 2

2
0 1 2

()
B v B v B

g v
D v D v D

′ ′ ′+ +
=

′ ′ ′+ +

where, for example, 2
0 0 3 6j jB B u B u B′ = + + with ju being obtained by table lookup.

The problem of which ()ig v is to be used is replaced with the problem of com-
puting in two framebuffers and solving the hidden surface problem implied.

Notice that ()g v may cause foldover in both intensity framebuffers, but in
any one framebuffer there is only a single foldover per vertical scanline instead
of the triple foldover implied by the original ()ig v and no auxiliary framebuffers.

We have claimed that the use of additional memory makes unnecessary the
determination of the ju , the inverses of x’ under ()f u . To make this strictly true,
we must make the following observations. A typical way to implement the func-
tion ()f u is to step along x’ in equal increments (e.g., one pixel increments) and
compute the inverse image u. The neighborhood of u is then used to compute the
intensity at location x’. Of course, this defeats the whole purpose of avoiding in-
verses, assuming they can be computed at all. we propose “straightahead” map-
ping for implementing ()f u to avoid inverses altogether. The idea here is to step
along u in equal increments, computing ()x f u′ = after each increment. Let jx′ be
a value of x’ for which we wish to know its inverse image. Let iu be values of u at
the equal increment points used as samples of u. Then when ()i ix f u′ = is less
than jx′ and 1 1()i ix f u+ +′ = is greater than jx′ , we either

(1) iterate on the interval []1,i iu u + to obtain the desired inverse image ju , or
(2) approximate ju by 1()j i i iu u a u u+= + − , where j ia x x′ ′= − .

The figures used to illustrate this paper were generated using the approxi-
mation (2) above. Filtering and sampling require integration of the intensity
function of u. This integration requires computation at each iu , so the cost, if any,
of straightahead implementation is a small addition to that already required.

Simplifications
Much of the heavy machinery in the examples above becomes unnecessary

in the following two special cases:

No perspective: It is easy to see that the division at each output pixel is unneces-
sary in this case—i.e., the scanline mappings are polynomials instead of ratios of
polynomials.

Planar patch: If the patch is known to be 2-D then, regardless of the order of its
bounding curves, there can be no foldover problem with the rigid-body trans-
formations considered here. (Lines can completely reverse direction however

3-D Transformations of Images in Scanline Order 12

(Fig. 6).) Hence no extra framebuffers are needed. The problem simplifies sub-
stantially, becoming a 2-D “warp” of a rectangular texture.

For example, a planar biquadratic patch under affine projection only (no per-
spective) has scanline functions of form 2()f u au bu c= + + and 2()g v dv ev f= + +
and can be accomplished in only one framebuffer.

Shading
People who have implemented hidden surface programs with sophisticated

lighting models have discovered that the time spent for the lighting calculation is
much greater than the time spent solving the hidden surface problem. We pro-
pose here that it may be faster to perform the light calculations on a square ca-
nonical polygon and then to transform the results.

Typically, normals for a polygon are determined and then interpolated
across segments. The normal at each pixel is dotted with vectors to the lights and
eye in some function to find the shading.

While framebuffers have been used to store intensities and depth values,
they can also be used to store normal values. The normal values can be kept in a
buffer at arbitrary resolution. The stream processor can then interpolate or ap-
proximate those normals to get normals at a higher resolution, normalize them,
dot them with other streams of normals, and use the dot products in intensity
calculations. The approach is:

1. Transform eye and lights relative to canonical polygon.

2. The canonical polygon normal framebuffer is filled with normals at some
resolution (say 4 by 4).

3. Generate a high resolution array of normals using cubic splines (we used b-
splines) first in the vertical direction, then the horizontal.

4. Normalize the normals.

5. The stream of normals is dotted with a stream of light vectors and/or eye
vectors to implement the lighting function.

6. The results are transformed into position into the final framebuffer yielding
the shaded polygon.

7. If we are also doing texture mapping, then the intensity of each pixel in the
texture is used as the color in the lighting function and the results [are trans-
formed as before.]

The approximation of normals with cubic curves can be done in a stream
processor by using difference equations. Each overlapping set of four values can
be used to generate a difference equation with a matrix multiply. Then the differ-
ence equation is used to generate all of the values. Until normalization, x, y, and z
may be treated alike and independently.

3-D Transformations of Images in Scanline Order 13

Conclusions
We have presented what we believe to be a powerful new way of looking at

3-D surface rendering in computer graphics. It is based on the old notion of
transforming to a canonical form, where the difficult work may be performed
with relative ease, then transforming back. The success of this notion in 3-D sur-
face graphics depends on the ease of realization of the transformations to and
from canonical form. We have shown that a stream processor and the 2-pass de-
composition technique give a technologically feasible realization of the notion for
modern computer graphics.

There is much work to be done to fully explore this approach. This paper be-
gins the exploration of this territory and points out several of the difficulties pe-
culiar to it.

Acknowledgements
Although we do not know the details of their work, we are aware that Larry

Evans and Steve Gabriel have been pursuing an apparently similar line of re-
search and wish to acknowledge them here. Mike Shantz and his colleagues at
De Anza Systems Inc. have also done independent work on separable transfor-
mations. They have implemented second-order polynomial coordinate transfor-
mations in hardware.

The photographs for this paper were prepared by David DiFrancesco at the
Jet Propulsion Lab (JPL). The source picture in all cases was generated by Turner
Whitted of Bell Labs for SIGGRAPH ’79 and is used with his permission and that
of the CACM.

Computing facilities at JPL were generously provided by Jim Blinn and Bob
Holzman. Facilities were also provided by Tom Ferrin and Bob Langridge of the
University of California at San Francisco.

References

[1] James F. Blinn, Simulation of Wrinkled Surfaces, SIGGRAPH Proceedings, Aug
1978, 286-292.

[2] Edwin Catmull, Computer Display of Curved Surfaces, IEEE Conference on
Computer Graphics, Pattern Recognition, and Data Structures, Los Angeles,
May 1975.

[3] Steven A. Coons, Transformations and Matrices, Course Notes No. 6, Univer-
sity of Michigan, Nov 26, 1969.

[4] A. Robin Forrest, Coordinates, Transformations, and Visualization Techniques,
University of Cambridge, Computer Laboratory CAD Document 45, Jun
1969.

3-D Transformations of Images in Scanline Order 14

perspective
projection

texture to be mapped

scanline

pixel

inverse
image of

pixel

inverse
map

Fig. 1. Texture mapping.

FB1

FB2 FB3
Stream

Processor

video
out

Fig. 2. Stream processor.

3-D Transformations of Images in Scanline Order 15

x0y0z0w0

x1y1z1w1

x3y3z3w3

x2y2z2w2

x0y0z0w0

x1y1z1w1

x2y2z2w2 x3y3z3w3

Fig. 3a. Bilinear patch.

Fig. 3b. Biquadratic patch.

3-D Transformations of Images in Scanline Order 16

Fig. 4a. Source texture by Turner Whitted. (By permission of CACM).

Fig. 4b. Simple rotate h-pass.

Fig. 4c. Simple rotate v-pass.

3-D Transformations of Images in Scanline Order 17

Fig. 5a. Source texture by Turner Whitted. (By permission of CACM).

Fig. 5b. Simple rectangle in perspective, h-pass.

Fig. 5c. Simple rectangle in perspective, v-pass

3-D Transformations of Images in Scanline Order 18

Fig. 6. Planar bilinear patch twisted about midpoint.

Fig. 7a. Nonplanar bilinear patch h-pass.

Fig. 7b. Nonplanar bilinear patch v-pass.

