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CELLULAR AUTOMATA 

 
A cellular automaton, or polyautomaton, is a theoretical model of a parallel 

computer, subject to various restrictions to make formal investigation of its com-
puting powers tractable. All versions of the model share these properties: Each is 
an interconnection of identical cells, where a cell is a model of a computer with 
finite memory—i.e. a finite-state machine. Each cell computes an output from in-
puts it receives from a finite set of cells forming its neighborhood, and possibly 
from an external source. 

All cells compute one output simultaneously and each cell computes an out-
put at each tick of a clock, i.e. after each unit time step. The output of a cell is dis-
tributed to its neighborhood and possibly to an external receiver. 

A version of the cellular automaton model exists for each set of choices in the 
following dichotomies: an infinite or a finite number of cells; a uniform intercon-
nection scheme (all cells have neighborhoods of the same shape, e.g. that in Fig. 
1) or a non-uniform scheme (Fig. 2); deterministic or non-deterministic cells (a 

choice of exactly one output value at each unit time step or a set of several val-
ues); the absence or presence of an external input (output), and, in the case of an 
external input (output), it is connected to all cells or to only a subset; Moore-type 
or Mealy-type cells (unit time or zero time required, respectively, between inputs 
and the associated output); a static or dynamic interconnection scheme 
(neighborhood does or does not remain fixed in time). Some of the names associ-
ated with one or more of these versions are cellular automaton, cellular space, 
tessellation automaton, modular array, iterative automaton, intelligent graph, 
Lindenmayer system, and cellular network. 

The first version of the cellular automaton, historically, was the cellular space 
obtained by selecting the first choice in each dichotomy above, but with no ex-
ternal input or output.  It can be visualized in two dimensions as an infinite 
chessboard, each square representing a cell. It has been used to prove the exis-
tence of non-trivial self-reproducing machines, is capable of computing any 

FIG. 1. A cell (hatched) and its neighborhood. 
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computable function with only three states per cell and the four nearest cells as 
the neighborhood (Fig. 1), and can exhibit Garden of Eden configurations; i.e. pat-
terns of cell states at one time, which can never arise in a given cellular space ex-
cept at time zero. If an external input is assumed distributed to each cell, then the 
cellular space becomes what is usually called a “tessellation” space. 

The cellular automaton is obtained from the cellular space by admitting only 
a finite, connected set of cells on the chessboard (Fig. 3). A cell with a neighbor 
missing has a special boundary signal substituted instead. The cellular automa-
ton is particularly useful as a pattern recognizer, where the pattern comprises the 
states of the cells at time zero, especially if non-deterministic cells are allowed. A 
famous problem for the (deterministic) cellular automaton, the Firing Squad 
problem, calls each cell a soldier with one of them as the general—i.e. all cells but 
one are “off” initially—and asks if all soldiers can begin firing simultaneously by 
going into the same state. The Firing Squad theorem, which solves this problem, 
guarantees a yes. 

FIG. 3. A cellular automaton with uniform neighborhood of Fig. 1 assumed. 

FIG. 2. A cellular automaton with non-uniform neighborhood. 
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The Firing Squad theorem remains valid even when a non-uniform intercon-
nection scheme is allowed. Thus, another version of the cellular automaton, the 
graphical cellular automaton (Fig. 2), requires only that the number of neighbors 
be fixed, not that they be in any fixed geometric relationship with a cell. 

The final type of cellular automaton to be mentioned, the dynamic cellular 
automaton, or Lindenmayer system (or L-system), allows a cell to divide into chil-
dren cells—regardless of the position of that cell in the initial array of cells—and 
allows the disappearance, or death, of cells.  This version, with its dynamic inter-
connection scheme, is of interest to theoretical biologists as a model for the 
growth and development of living things. There are now in the 1990s many pa-
pers applying L-systems to the growth of realistic plants and trees (Plate 1). 

The infinite chessboard cellular automaton model gained much public popu-
larity in the 1970s as the so-called Game of Life. A resurgence of interest in the 
1980s accompanied application of simple two-state, one-dimensional cellular 
automata (now often abbreviated CA) to fractals (q.v.) and dynamic chaos, rich 
new subjects that arose during that decade, propelled by inexpensive computer 
graphics (q.v.). 
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