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Simple Nontrivial Self-Reproducing Machines

A simple and brief proof of the existence of nontrivial self-reproducing
machines, as cellular automata (CA) configurations, is presented, which
relies only on computation universality. Earlier proofs are book length and
rely on “construction universality.” Furthermore, simple CA are shown
to support nontrivial self-reproduction—hence, simultaneously simple and
nontrivial. Nontriviality is guaranteed by the requirement that the machine
which reproduces itself is also a universal computer. Biological relevance—
or non-relevance—is also briefly discussed, as is trivial self-reproduction,
called self-replication.

INTRODUCTION

The purpose of this note is to increase awareness of a cellular automata (CA)M
result which is over 20 years old, but previously unavailable except in my Stanford

[11There has been a revival in interest in CA theory since the combined advent of chaos, fractals,
and interactive computer graphics in the 1980s, inspired principally by Wolfram and the other
authors.3® There is a surprising ignorance by much of the post-revival literature of the hundreds of
papers written during the preceding 20 years or so. Part of the problem is the lack of knowledge that
CA had many other names then: iterative arrays, tessellation automata, cellular spaces, modular
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Ph.D. dissertation,?® abbreviated in an old conference proceedings,?* and hinted
at in exercises in Arbib.® This is a brief proof of the existence of self-reproducing
machines which are nontrivial in the sense that they are capable of computing any
computable function. In fact, several different proofs are given.

This is to be compared to numerous lengthy or complex proofs. John von Neu-
mann introduced the concept in a book3® which also created the field of CA theory
(from a suggestion by Stanislaw Ulam). We will use the term “machine” in the same
sense as von Neumann—a finite collection of non-quiescent cells in a CA. Both his
CA (29-state cells) and his self-reproducing configuration (40,000 or so nonquies-
cent cells) were complex and inspired others®%19:33 to simplify. Von Neumann’s
lengthy proof—book length—is constructive. The other proofs just mentioned are
also constructive and book length, except for Arbib® which is short but uses very
complex cells. The proof exhibited here is an existence proof only, but it is just
two pages long. The constructions of the constructive proofs are very tedious. This
plus the fact that the principal result in all cases is that self-reproduction is logi-
cally possible makes an existence proof sufficient. And, as we shall see, the existence
proof herein is actually stronger than that term might suggest, it being theoretically
possible to compute a construction from the proof.

More importantly the proof here reduces the problem of self-construction to a
computation problem, which means that no machinery beyond ordinary computa-
tion theory is required for self-reproduction. This is the real reason for the brevity
of the proof. It will be seen to turn on invocation of the famous Recursion Theorem
of recursive function theory (see Rogers,?® for example).

The result and its relation with the literature is brought up-to-date.

RECURSIVE FUNCTION THEORY

The branch of mathematics which deals with those computations that digital com-
puters can perform is called recursive function theory. This theory tells us that
there exist “effective enumerations” of the partial recursive functions; this simply
means that all computer programs can be listed by some one computer program
(which itself must be in the list, of course). Let’s call this list “the List.” Then the
1th program (partial recursive function) in the List is denoted List(z).[2]

Two well-known theorems used herein are these:

arrays, polyautomata, etc. The references herein can be used as pointers into this literature (e.g.,
see Smith®?).

[2] As usual a total function is one defined for every element of its (input) domain, whereas a partial
function may be undefined for some elements of its domain. A total recursive function corresponds
to a computer program which halts on every input, and a partial recursive function to one that
may not halt on some inputs (for example, it might go into an infinite loop).
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THE UNIVERSAL TURING MACHINE THEOREM In the List of all programs is a spe-
cial program, U = List(j), and a total recursive function e of two variables such
that, for an arbitrary program P = List(i) and an arbitrary input z to that pro-
gram, U( e(P, z) ) = P(z)if P(z) is defined, and is undefined if P() is undefined.
We will call U in this case a universal Turing machine function Uand e the encoder
function associated with U. In other words, one of the programs in the List of pro-
grams can simulate all others, given an encoding of each program and its input. U
is the mathematical representation of today’s digital computer. It was Alan Turing
who made this wonderful discovery (in 1937) of a universal computer and initiated
the digital computer revolution, so we name the function after him.

We assume that an encoder function is simple—that it is not complex enough to
hide a universal computer, for example. We also assume that an encoder function
is total recursive on (program, input) pairs. In fact, we assume it is birecursive,
meaning that it can be uniquely decoded in a computable way.

In practice, a generalization of the above is allowed. Thus, an encoding of an
arbitrary program and its input is given to a universal computer. The universal
computer simulates the given program on its given input and generates the output
of the simulated program. In the Universal Turing Machine Theorem statement
above, the output of the universal computer is exactly the output of the simulated
program. In practice, a machine is still considered universal if it outputs an en-
coding of the simulated output rather than the simulated output itself. As for the
program/input encoding function, the output encoding function is assumed to be
simple. We shall call universal computers decodeless if they do not require an output
encoding function.

It is worth pointing out here that any universal computer which is not decode-
less can be made so by appending a “termination subroutine” to its program which
decodes the encoded output before halting. This is possible because we assume de-
coding is computable. Clearly, this larger program is still a program and, hence,
in the List. So there are lots of universal computer programs (or functions) in the
List. The next important theorem says this more formally.

THE RECURSION THEOREM If h is a total recursive function from programs into
programs, then there is a fixed-point program P such that P = h(P). This is
just a way of saying that any computation shows up in the List many times—that
the List is redundant, certainly in any computable way (represented by h)—or that
there are many different programs that ultimately compute the same thing.

It’s not hard to understand why. Consider a program which performs the com-
putation of adding 1 to its input. There is another program which does the same
thing but (stupidly) executes a subroutine which counts to a million before exit-
ing. Since any number can be substituted for “million” in the preceding sentence
and each resulting program is different, then the List must contain them all or a
countable infinity of programs for adding 1. In this case, h is the function that
appends to any program the subroutine which does nothing but count to a million.
The h introduced in this paper is far more interesting and the resulting fixed-point
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program of the Recursion Theorem far more profound—it is crucial to our desired
result.

Since P in the Recursion Theorem above can be computed (e.g., see Arbib®),
our existence proof will be constructive, in this theoretical sense.

Alan Turing invented, in the course of his studies leading to the universal
computer theorem, a theoretical computer now called a Turing machine. This very
simple device is instrumental in our results here, and details will be provided in a
later section. It is mentioned here because each program in the List can be thought
of as a Turing machine. In other words, a list of all Turing machines could be
the List we refer to above, and both of the important theorems above apply to
it. In fact, this is why the first theorem is called the Universal Turing Machine
Theorem. The universal Turing machine is that Turing machine in the List which
simulates all other Turing machines in the List. Several leading mathematicians
in the 1930s and 1940s spent considerable effort proving that several apparently
different ways of describing computation were all equivalent. We therefore feel free
today to use “program,” “Turing machine,” “effective computation,” and “partial
recursive function” interchangeably for the same concept although the formalisms
are often different.

CONSTRUCTION VS. COMPUTATION

Usually it is only the computational abilities of CA which are investigated. It is
also of interest to study the “constructional” abilities—the construction of one
configuration by another. This was one of the original motivations for the study
of CA. As mentioned above, von Neumann®® introduced the CA, conceived as an
infinite chessboard, each square, or “cell,” of which represents a copy of a single finite
automaton (computer), as an environment in which to study the logical intricacies
of biological reproduction. This paper is also along these lines.

It is not at all clear what “construction” should be defined to be. In fact,
Holland!? has given arguments which show that Moore-type CA are inherently in-
capable of supporting construction in the full generality that term might support—
namely, construction of, or simulation of, arbitrary networks of finite automata.!
This is no surprise in view of the existence of Garden-of-Eden configurations (pat-
terns which cannot arise from computation, but can only exist at time zero by ex-
ternal programming of the CA) in even trivial CA.?° Lieblein!® has characterized
the sequences of configurations which can be attained in Moore-type CA. We shall
be interested in sequences which are readily realized in a Moore-type CA and will
not even find it necessary to define construction—computation will be sufficient.

The type of construction process which is treated in this paper is called self-
reproduction®® where the definition of this term is assumed: Let ¢g be an initial

Bla Moore-type, or sequential, CA is one with memory at each cell so that there is a delay
between any input and its associated output. This is distinguished from Mealy-type CA which
allow instantaneous (combinational) output from inputs at each cell. The von Neumann CA and

all others considered in this paper are Moore-type.
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configuration or subconfiguration in some (infinite) CA. Then ¢o self-reproduces in
the (Moore) sense if, at some time ¢ > 0, there exist at least two disjoint. copies of
co; at time ' > ¢, there exist at least three disjoint copies of co; etc. To say there
exists two disjoint copies of a configuration ¢ in configuration ¢’ means, of course,
that there is a translation § such that ¢ = ¢ U éc. Two configurations are disjoint,
of course, if their non-quiescent cells are disjoint.

As Moore points out, this definition permits trivial CA phenomena to be in-
terpreted as self-reproduction. For example, the configuration consisting of a single
non-quiescent cell (a single 1 on a background of 0’s) self-reproduces in the one-
dimensional CA with K, template (a cell and one of its nearest neighbors—see
Smith?? for details) and transition function f which maps the current state of a
cell, given the current state of its neighbor, to next-state 1 (that is, f(go, 1) = 1
except for f(0, 0) which by definition of quiescent background must be 0). Thus,
care will be exercised to ensure the nontriviality of any self-reproducing configu-
ration introduced in this paper. In particular, we will insist, as is the historical
precedent, that a self-reproducing configuration be a universal computer. This def-
inition of nontriviality is perhaps overly restrictive for biological purposes, but we
as yet do not have a more lifelike complexity requirement.

TURING MACHINE SIMULATION

The environment of the self-reproducing machines to be introduced below will be
CA of the simple Turing-machine simulation type introduced in Smith.?%25 We first
review Turing machines and then outline the simple simulations of them by CA we
require.

A Turing machine is a conceptually simple device consisting of a one-dimen-
sional tape divided lengthwise into squares and a head which scans along the tape in
either direction. The tape is assumed infinite in extent and each square is initially
blank, but for a finite input section. The head has a finite amount of memory,
expressed as a finite number of states the memory can be in. The head can be
thought of as containing the program to be executed by the Turing machine. At
any one step, the Turing machine head can read or write the square currently being
scanned and can then move either one square left or right. It can read or write a
finite set of symbols, of which one is the blank, on its tape. We will refer to an
(m, n) Turing machine M and mean an m-symbol, n-state Turing machine. It is
surprising that this simple device can compute any computable function but this is
what the Universal Turing Machine Theorem says. Minsky has found the simplest
known universal Turing machine to be a (4, 7) Turing machine; he has also found a
(6, 6) universal Turing machine.!® These are not decodeless universal computers;
they assume the simulated output tape is encoded.

The notion of simulating a Turing machine by a CA is straightforward (and
rediscovered numerous times): A row of CA cells simulates the squares on a Turing
machine tape while at the same time simulating the head of the Turing machine.
The state set of the CA cell is chosen to have two coordinates: one simulates the
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symbol on the Turing machine tape; the other simulates the state of the Turing
machine head or the absence of the head at that cell. Appropriate choice of tran-
sition function operating on the nearest-neighbor neighborhood makes it easy to
directly simulate the Turing machine. It is easy to show that an (m, n) Turing
machine can be simulated by a one-dimensional CA with m x (n + 1) states per
cell. Without working too much harder, this can be improved to m + 2n states per
cell.?® Thus, the (4, 7) universal computer (or the (6, 6)) can be simulated by an
18-state, 3-neighbor CA.[41 We will say that Turing machine M is wired into CA
Zpr or that Zyr has M wired in.
For notational convenience, the following devices will be employed:

z—p y (1)

means that Turing machine program P acting on initial tape z halts with y (and
nothing else but blank squares) on the tape as its final result.

z—p y—py—p... (2)

means that Turing machine program P acting on initial tape z alters the tape until
y is on the tape at some time ¢ > 0. P proceeds to compute on this tape until y'
appears on it at some time ¢’ > ¢; and so on. This is a way of representing the
temporal sequence of tapes generated by a Turing machine treated as generator of
recursively enumerable sets instead of as a computer of partial recursive functions.

T (3)

indicates that a Turing machine control head is scanning the leftmost (nonblank)
symbol in the string z written on its tape.

Exploiting the ease of simulation of Turing machines by CA leads directly to
self-reproducing CA in the next section. Then, in the following section, very simple
self-reproducing CA are derived, also using the simulation of Turing machines.

SELF-REPRODUCTION: SIMPLE COMPUTATION, COMPLEX CA

In this section we will present a self-reproducing CA—a CA with a self-reproducing
configuration—which is not necessarily simple, but is easy to describe. A Turing
machine computation is described which does the desired thing. This Turing ma-
chine is wired in a CA which is then self-reproducing. The CA is, thus, as complex
as required by the Turing machine that is wired in. In other words, the wired-in
Turing machine “does everything.” But first, just for exercise, we use the technique
to prove self-reproduction where we relax the nontriviality requirement. We call
this trivial self-reproduction self-replication.

[41See the last section and last footnote for improvements to this.



Simple Nontrivial Self-Reproducing Machines 715

SELF-REPLICATION, OR TRIVIAL SELF-REPRODUCTION

Wire in machine M which duplicates its input tape, repositions its head, duplicates
all tape to the right of this position, and then repeats these steps forever. This can
be represented as follows:

Tﬂ?—)M(Q}',Tx)—*ng(.’ﬂ,x,TJ?)—“M..‘ (4)

where the vertical arrow indicates the position of the head after the computation
indicated by the horizontal arrow immediately to its left.

Note that any one-dimensional configuration can be made to self-replicate in
this scheme. Just embed a “head” cell at the left end of a given “tape” configura-
tion; program the head cell to its initial state. Thus, we have proved the following
theorem:

THEOREM 1 Let S be the set of finite one-dimensional configurations on finite state
set Q. Then there exists CA Zps in which s is a self-reproducing configuration, for
all s € S.

Since this result can be readily generalized to the d-dimensional case, we have
answered in the affirmative a question raised by Lieblein'®: Can any configuration
be made to self-reproduce? Closely related to the theorem is the work of Waks-
man.3” He has shown that a one-dimensional string can be made to self-replicate
in a one-dimensional CA specially designed for the given string. Self-replication in
the Waksman scheme proceeds in real time except for an initial “setting-up” time.
“Realtime” here means that a string of length n is reproduced in n time steps. Note
that our self-replication scheme is slower than real time (although linear time in
n), but one CA serves for all strings.

NONTRIVIAL SELF-REPRODUCTION

Wire in universal Turing machine U’ such that

1 €e/(P,z) — v:(e'(P,z),y,1 €(P,z)) — vi(e'(P,z),y, ¢ (P,x),y, 1 €(P,z))

e o i PN

where ¢ is the encoding of programs and tapes required by U’ and  — py. Thus,
U’ first makes a copy of its input string. This can be done in such a way that
the head of the universal machine never moves left of its initial position (at the
leftmost symbol of its initial input string). Then, it simulates the computation of
program P on its input z. If this computation halts with output y, then U’ writes
y on its output to the right of the copy of the input string e( P, ¢). It is well known
to Turing machine programmers that this simulation can be made to happen in
the half-infinite space to the right of the input string copy so as not to destroy it
during the simulation. Then another copy of the input string e(P, z) is written to
the right of y. Finally, the machine repositions its head to the leftmost symbol of
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the rightmost copy of string e(P, z) and reenters its start state. Since U” is designed
to ignore everything to the left of its start state position, the infinite computation
represented above is achieved. Hence:

THEOREM 2 For any Turing machine P, there exists a CA Zy, and configuration
¢ such that ¢ self-reproduces and simulates P,

Note that P could be universal if desired. Hence:

Corollary 2.1. There exists a CA Zy., and configuration ¢ such that ¢ self-
reproduces and is universal.

This corollary establishes the existence of universal (meaning computation uni-
versal) self-reproducing machines, but we are now also interested in obtaining the
simplest such machines (in terms of state count per cell). Notice that I/’ above has
to do a lot more than just simulation of an arbitrary computation. In particular,
its restriction to half-infinite tapes will increase its complexity.

SELF-REPRODUCTION: COMPLEX COMPUTATION, SIMPLE CA

In this section we derive the main result of this paper. As opposed to the section
above, the self-reproducing configuration “does everything.” That is, for simplicity
of the simulating CA, the wired-in computer U does as little as possible—i.e.,
nothing more is required of U than it be universal. The (4, 7) universal machine
suggests to us just how simple (in terms of state and symbol count) U can be. In
fact, since the simplest (decodeless) universal program U does just the following:

e(P', 2" — py
where e is the encoding function required by U and
' — py |
then a program P is desired such that
Tz — p(e(P2),y,1 e(P,2)) = p(e(P,z),y,6(P, z),y,1 e(P,z)) = p...

where y is the result of some computation on z. For example, y might be a string of
d background (blank or quiescent) symbols, b% so that e(P, z) is “separated” from
the second e(P, z).

Note that if such a program P exists, then self-reproduction is straightforward.
Simply take CA Zy with U wired in and embed initial subconfiguration e(P,z).
Then the following situation holds:

Te(Pz) = y(e(P,z),y,1e(P,z)) — v(e(P,z),y,e(P, z),y,Te(Pz)—yp....

That is, the configuration representing e(P,z) is self-reproducing. We now show
that the desired program P exists and, furthermore, that it can be chosen to be
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universal. This result should be compared to a similar, but “one-shot,” result on
self-describing machines obtained by Lee.'* He proved that there is a program P
such that

z — pe(P,z)

with z the blank tape. Thatcher®? created an actual example of such a machine.

LEMMA 3 For an arbitrary birecursive encoding function e from (program, tape)
pairs to tapes and for an arbitrary partial recursive function g, with g(z) = v,
there exists a self-describing machine with program P such that

Te— p(e(P,a:),y,e(P,J:)) —>p(8(P,:l:),‘y,T e(P,a:)) =FPiaei

PROOF Define function h from programs into programs such that

T2 — no)(e(@,2), 9,1 €(Q,2)) (a)

and
Te(Q,2) — n@)(e(@,2), 9,1 e(Q,%)) - (b)

That is, h(Q), for arbitrary program @, is a program which first checks the
input tape for a string of form e(Q, z), for arbitrary z. This it can do because
both e and Q are given it. If the input tape is not of form e(Q, z), then h(Q)
executes the action indicated in (a) and described in temporal order below. As
above, all computation is carried out in the singly infinite tape to the right of
the initial head position which is the leftmost symbol of the initial tape.

1. h(Q) first encodes the given program Q and input z with the given encoding
function e to obtain e(@Q,z) and writes this on the tape while destroying the
initial tape z.

2. It computes the given function g on argument z and writes the result y, if
it is defined, to the right of the code e(Q,z).

3. It writes the code e(Q, ) again to the right of string y.

4. Tt repositions its head to the leftmost symbol of the rightmost code string
e(Q, ) and halts.

If the initial tape is of form e(Q, z), then h(Q) skips step (1) above and proceeds
immediately to steps (2)—(4).

his a total recursive function. Q and h(Q) may not halt (see step 2 above), but
h(Q) is defined for every Q. Hence, by the Recursion Theorem, there exists a
fixed-point program P for h—i.e., h(P) = P. For this program, (a) and (b)
above become respectively .

T L —r h(P}:P(e(P) :I'.!), y:T B(P, 1‘))
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and
T e(P,z) —p (e(P,z),y,1 (P, z))

where y = g(z) is defined. The lemma follows immediately if the final (halt)
state of P is identified with its initial state. Clearly, if the halting version of P
exists in the list of all programs, then the nonhalting version must also though,
of course, with a different name or index.

THEOREM 4 Let Zy be a universal CA with decodeless universal Turing machine
U wired in. Then there exists a configuration ¢ in Zy; which is self-reproducing and
computes an arbitrary given partial recursive function g.

COROLLARY 4.1 There exists a CA Zy and configuration ¢ such that ¢ self-
reproduces and is universal.

PROOF Choose g in the theorem to be a universal Turing machine function.

I had hoped to prove the stronger result with the word “decodeless” omit-
ted from the theorem above (and in fact claimed to have done so until my error
was pointed out by Kristian Lindgren and Mats Nordahl). Then the universal CA
of Smith?® would have immediately implied the existence of one-dimensional self-
reproducing universal machines with 2, 3, 4, 5, and 7 states per cell, for example.5!
These universal CA, however, are derived from Minsky’s simplest known univer-
sal Turing machines which are not decodeless. I claim without proof that there
are extremely simple decodeless universal Turing machines, perhaps adapted from
Minsky’s with the addition of one or two states, but leave it to some reader to find
such a machine. It is only necessary that a universal machine be extended to decode
its own output. This should be far simpler than the extensions beyond universality
required by U’ in the preceding section. Then the simplest known non-trivial self-
reproducing machine immediately follows from the theorem and corollary above.

In comparison, von Neumann exhibited a 29-state universal CA capable (in
two-dimensional) of supporting self-reproduction. His neighorhood—the so-called
von Neumann neighborhood—consists of the five nearest-neighbor cells, including
the cell itself. His construction is very lengthy and complex. Codd'® was able to
reduce the state count to 8 states per cell but his construction is also long and
even more complicated. Codd’s construction uses the so-called Moore neighborhood
consisting of the 9 nearest-neighbor cells in two dimensions. Then Banks® created

[*1The complete selection of m-state x n-neighbor one-dimensional universal CA is 2x 21, 3x13,
4X9, 5x8, Tx86, 11x4, 18x3, and 40x2.



Simple Nontrivial Self-Reproducing Machines 719

the simplest known two-dimensional self-reproducing CA with 4 states and the
von Neumann neighborhood.l®! By greatly increasing cell complexity,® Arbib was
able to describe the processes simply. Here we have demonstrated both simple CA
and simple descriptions by deriving CA with low-state count and using recursive
function theory for compact constructions in them. Whereas, the earlier work in
this area was confined to two dimensions, the results here are most elegant in one
dimension although applicable to two or more dimensions. And finally, it is also
striking that nowhere have we had to define “construction” in a CA to obtain
self-reproduction—in fact, computation universality has been shown sufficient. The
notion of “construction universality” used in earlier proofs is not required here.

Several comments about the class of self-reproducing machines developed here
are in order. First, reproducing schemes based on the Recursion Theorem have been
mentioned in several other places 2122333 However, in all these cases the reproduc-
tion is one-shot—the process ceases after production of one offspring. The scheme
of Theorem 4 produces offspring ad infinitum.

Second, if a self-reproducing configuration is interpreted to be “alive” only if
it can reproduce again and again, then the machines of Theorem 4 are not alive.
Once one of these machines computes and reproduces a single time, it becomes
inactive. Of course, there is “no room” for another reproduction, but we will ignore
this (degenerate) Malthusian dilemma and present a method for keeping a parent
alive.

What we want is an augmentation of the scheme in the proof of Theorem 4
such that the head cell (active site) is also reproduced. This is how to accomplish
the desired task:

1. A special symbol # is written after each string y, if y is defined.
2. When this situation occurs

L #.e(Pa),y,#,1e(P2),

the cell representing # has the head cell in its neighborhood. When the head
cell goes into its initial state H, the transition function f of the CA takes note
of the juncture of # and H and creates a new head cell (indicated by an arrow
pointing down):

.., 3, e(P,2), y, 3,1 e(Pyz) — o e(Poe),y, L #1 e(P,x).

[6]Banks® also demonstrated a 2-state, Moore neighborhood (two-dimensional) universal CA and
a 3-state, von Neumann neighborhood universal CA. More attention has been paid to another 2-
state, Moore neighborhood (two-dimensional) CA which is universal.B:38 It is the so-called game
of Life popularized in the Scientific American in 1970 and 1971.11 Codd!® proves that no 2-state,
von Neumann neighborhood universal CA can exist (hence,no k = 2,7 = 1, Class 4 CA, in
the terminology of Wolfram,?® can be universal without changing the definition of universality
(as done in Lindgren,1® see last footnote)). In any event, none of these CA are known to support

self-reproduction.
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3. The new head cell propagates to the left until it encounters the next # to the
left at which time it is in a position to reactivate the parent, and it does so by
going into state H.

This scheme has the attraction of being a fully functional CA, with lots of
computations proceeding in parallel, and not just a simulated Turing machine. (See
Hurd'® and Smith? for demonstrations of how CA exceed Turing machines.)

If other dimensions are available, then in step (3) the new head can, while
propagating left, move the entire string between consecutive # states up one unit
in another dimension. This, however, still leads to a Malthusian overcrowding (see
Moore?*—his “population” theorem goes through for our generalized cellular au-
tomata). Lofgren!? gives a partial solution to this problem in terms of “birth” and
“death” rates and “complexity,” or number of cells per self-reproducing configura-
tion. He does not, however, give the mechanics of self-reproduction assumed in his
theory—each machine is known only to reproduce and be erased at certain rates.

The third and most important comment on our self-reproduction scheme is
concerned with its biological relevance. Have we designed machines which actually
construct other machines, or are the procedures introduced here just fancy copying
routines somehow distinct from construction? Even with the modifications sug-
gested in the second comment above, the model is still very non-biological (as are
all the other tessellation models) in one obvious way—it is not parallel but serial in
the extreme. Also the concept of growth is ignored in the sense that in our model
a full-grown multi-cell offspring is constructed by the parent—not an undeveloped
single-cell “egg” which grows under its own control into a replica of its parent.

Arbib® has exhibited an example of morphallactic regeneration of an elementary
“worm” which proceeds in a highly parallel fashion. The worm is a one-dimensional
string of identical cells divided into equal sections of head, body, and tail states.
If a length of the worm is destroyed, the remaining cells reapportion themselves
into equal thirds of head, body, and tail. This resembles the morphallaxis of hydra
in the biological world. (A simple exercise for the interested reader is to embed a
worm like that of Arbib in a one-dimensional CA designed so that the worm grows
its missing parts in the correct proportion.?®) Similarly, Lieblein'® has detailed
the'CA realization of one of the highly parallel tessellation-like models of biological
phenomena such as reproduction, evolution, mutation, crossing-over, and even cre-
ation. Vitanyi®* added sexuality. Case® pursues self-describing computations which
build distortions of themselves. My own closest approach to biological uses of the
theory is Smith 3!
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TOTALISTIC SELF-REPLICATION AND SELF-REPRODUCTION

The recent revival of interest in CA has concentrated on the totalistic case, where
the transition function is required to be an arithmetic function of the neighborhood
states. A result that has been rediscovered numerous times is that trivial self-
reproduction—that is, self-replication—is possible in totalistic G4 2182,08

For nontrivial self-reproduction, the relevant result is due to Albert and Culik!
who have discovered a one-dimensional universal CA that uses only the nearest
neighbors for a neighborhood and 14 states per cell.ll Inspection of their proof
reveals that their CA has a background wave of activity which converts the qui-
escent state of the CA to a preparatory state. So there is a constantly expanding
wavefront of multiple state changes to effect this preparatory state. Their universal
computation operates in the midst of this “big bang” expanding wave. The proofs
herein do not go through for this background activity. Nevertheless, with appro-
priate changes to the definitions—to allow an expanding background rather than
a quiescent background—TI believe the arguments could be made to go through. I
have not attempted to do so.

[7] And shattered my record of 19 years for the simplest known one-dimensional universal CA with
the 3 nearest-neighbor neighborhood! Mine had 18 states,26 but the authors of Lindgren! show
that a careful selection of state subset of my solution suffices for a 13-state solution. In fact, they do
better than this: They show a new 9-state solution. (That is for an apples-to-apples comparison,
for universal computation against an initially quiescent background. By relaxing the quiescent
background requirement to permit periodic initial backgrounds, they are able to show a 7-state
solution.) The most surprising result to me of the Albert-Culik work is that totalistic CA suffice
for universality. Combining two of their results yields a 56-state, 3-neighbor, one-dimensional
totalistic universal CA.
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