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Cellular Automata Complexity Trade-Offs*
Arvy Ray Smrra 111

Department of Electrical Engineering, New York University, New York 10453

The general theory of cellular automata is investigated with special attention
to structural complexity. In particular, simulation of cellular automata by
cellular automata is used to make explicit trade-off relationships between
neighborhood size and state-set cardinality. A minimum neighborhood template
with d + 1 elements is established for the class of d-dimensional cellular
automata. The minimum state set for this class is shown to be the binary state
set. The temporal costs, if any, of structural complexity trade-offs are also
studied. It is demonstrated that any linear time cost can be eliminated and,
in fact, a speed-up by arbitrary positive integer factor k can be attained at an
increased structural cost.

1. INTRODUCTION

A cellular automaton—also known variously as a cellular space (von
Neumann (1966), Thatcher (1964), Codd (1968)), modular computer
(Wagner (1964)), iterative computer (Cole (1969)), or tessellation automaton
(Moore (1962), Arbib (1966), Yamada and Amoroso (1969))—can be
visualized as an infinite strip of flm in one dimension or an infinite chessboard
in two, each frame or square of which represents a copy of a single finite-
state machine, or “cell”’, connected in a highly regular fashion to its neighbors.
Time proceeds synchronously and in discrete steps for all machines in a
cellular space. To avoid timing problems which arise when delayless
communications over arbitrary distances are allowed, we assume in this
paper that each cell is a Moore-type finite-state machine (i.e., unit delay
between input and output).

The cellular automaton was originally employed by von Neumann in 1959
for biological modeling but has recently received renewed interest from
computer designers because of technological advances. In particular, the mass
fabrication techniques of large-scale integration place a premium on high

* Portions of this paper were presented at the IEEE Ninth Annual Symposium on
Switching and Automata Theory, October 15-18, 1968, Schenectady, New York.
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uniformity which is one of the two outstanding characteristics of the cellular
automaton. The other is the high degree of parallelism inherent in the
cellular model. This factor is also of interest to the computer designer in his
search for faster computation times. In this paper, however, the modgl is
treated as a mathematical object divorced from ‘“‘real-world” applications.
The reader interested in more specialized theory is referred to Smith (1969).

11. DEFINITIONS AND NOTATION

Let Z be the integers, and let d-D abbreviate “d-dimensional” for positive
integer d. Then Z¢ is the set of d-tuples of integers and can be thought of as
the points with integer coordinates in d-D Euclidean space E?. In particular,
the d-tuple (0,0,...,0) will be denoted by 0, the value of d being determined by
context, and a boldface lower-case letter, say a, will label the d-D vector
(g, @y 5 @q_y)- In particular, a + b = (@ + by, ay + by yeoy @aq + bay)
is a vector sum. The distance p between a and b is given by p(a, b) =
]ao—bo‘+]a14b1[+"'+|adf1_bd—1|-

Then a cellular space is constructed from a countably infinite set of
automata indexed by points in Z? where each automaton in the set is an
exact copy of a single finite-state automaton G, a cellular-space automaton,
defined as follows:

We use the usual definition of state-output (Moore) finite automaton as a
quintuple (X, Y, O, f, B) where X, Y, and Q are finite sets called, respectively,
the input states, the output states, and the internal states. The next-state
function is f: Q X X — Q, and B: Q — Y gives the output. However, we
will consider only the case where X = Q» and Y = Q" That is, under
interpretation, G has n input lines and # output lines, which we order. That
is, put X = [TiQ; and Y = H;L=1 Q; where O, =0, 1 <k<n
Furthermore, we have the following restrictions on G:

(1) B@) = (@ - 9
(2) There is a specially designated state go €0, the quiescent state,
such that f(¢y ; 4o »-+» 90) = 9o -

For a given cellular-space automaton G and integer d, define a d-D cell set
S to be the indexed set of exact copies of G indexed by the points in Z¢.
Thus S = {4,, | m € Z% and each copy 4,, of G is called a cell. A cellular
space will be defined as a composition of automata in a cell set. In general,
a composition is given by a composition function which specifies which inputs
of automata in a set of automata are connected to which outputs of elements
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of the set. Holland (1965) gives a detailed analysis of such functions. However,
for our purposes the composition function can be given conveniently by
specifying the neighborhood of each cell.

DeriniTion 1. Let S be a d-D cell set and let N = (ay ,..., a,) be a finite
ordered subset of Z¢ with a; = 0; such an N is called a d-D neighborhood
index. Then the neighborhood of A, €S is the set {4,| p = m -+ a;} of
neighbors of A, , where input linej, 1 <j < n, of Ay isoutput linejof Ay, -

Thus the neighborhood of A4, is the set of cells which influence the state
- behavior of A, in one time step.

DEFINITION 2. A uniform cellular automaton (or uniform cellular space)
Z is a triple (G, d, N), where

G is a cellular-space automaton with next-state function f, the
local transition function of Z, and quiescent state ¢p, the
quiescent state of Z, and state set Q, the state set of Z;

d s the dimension of Z;

N is a d-D neighborhood index such that {4,|p =m + a;;
a; € N}is the neighborhood of 4,, for all A, in the d-D cell
set S determined by G and d; N is the neighborhood index of Z.

Remark 1. The adjective “uniform” is used to indicate that each cell
has the same neighborhood index—a restriction which might be profitably
relaxed when using the model for, say, embryological modeling. We will
henceforth drop the adjective, it being assumed unless otherwise stated that
any cellular space discussed is a uniform cellular space.

Remark 2. Implicit in the definition is a clock which assures synchronism
of operation of all cells in Z.

DeFiNtTION 3. The neighborhood template T (or just template T) of a
cellular space Z with neighborhood index N = (@, @y yeors @y) 18 the set
T = {a,, ag -, @y} The point a, == 0 is the template origin.

For 1-D and 2-D cellular spaces it will be convenient to have a diagrammatic
device for specifying a neighborhood template. Thus, e.g., a template is 2
subset of chessboard squares such as shown in Figure 1(a) where we hatch
the cell whose neighborhood this is—i.e., we hatch the template origin. In the
intuitive model, the neighborhood of cell A, in space Z is determined by
translating the template associated with Z until the hatched template origin
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covers cell A, ; the cells that lie under the template squares then form the
neighborhood of 4, .

It will often be convenient in this paper, when no confusion exists as to
dimension, to label a cellular space by a pair (7, 7), where T'is a neighborhood
template and 7 is the number of states per cell. This notation is used, e.g.,
to discuss the simulation of one space by another. In this case, the exact
nature of the local transition function need not be known.

5 i
i

(a) (b) (c) (a)
Fic. 1. Templates with hatched origins.

Two neighborhood templates of special and historical interest are the 5-cell
template (Figure 1(a)) of von Neumann (1966) and the 9-cell template
(Figure 1(b)) of Moore (1962). These are members of two classes of templates
first defined as follows by Cole (1969):

Define two norms:

d—1
lal=Y lal,
=0
— n
lal =, max_ {lal

Then define two classes of templates from the two norms:

Hy={allal <k}

Je={alllall <A
If the general convention T'@ is utilized to make explicit that T is a template
in a d-D cellular space, then H{? is the von Neumann neighborhood template

and J® is the Moore neighborhood template. We also define two closely
related classes of templates:

K,—{alla| <kanda,>0,0<i<d—1}
L —falllall <kanda;>0,0<i<d—1}

(2)
1

Figures 1(c) and 1(d) represent templates K{* and L{®, respectively.
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It will be convenient in discussing templates to make the following
definitions: Let A and B be two subsets of Z¢ with a€ 4 and be B. Then,
if ka = (kag , kay ,..., kag_y) for integer k, we define the sum of A and B
byAd+B={a+ b} and the difference of A and Bby A — B ={a + (—1)b}.
The set k4, k a nonnegative integer, is defined recursively by

04 =0,
(k+1)A = kA + A.

Note that 4 + B is not the union 4 U B, A = B is not the set theoretic
difference A — B, and kA is not the set {ka}.

In the definitions so far, we have viewed a cellular space on the “local”
level: a cellular-space automaton and a neighborhood template determine
an infinite composition. We now look at the infinite composition as a single
machine.

DerNITION 4. A configuration ¢ in a cellular space Z = (G, d, N) with
d-D cell set {A4,,} and Q the internal state set of G is an assignment of states
from Q to all cells in the space—i.e., ¢ Z* — Q is such that ¢(m) = ¢
assigns state ¢ to cell A,. The support of ¢ is given by sup(c) =
{m | ¢(m) # 4o}, and (sup(c))’ = Z* — sup(c). Then C is the set of con-
figurations in Z with finite support. A configuration in Z at time t = 0 is
called an initial configuration ¢, . We shall assume sup(c,) is finite, for any ¢, .

DeFiNiTION 5. The neighborhood state N(c, m) of a cell 4, at point m € Z*
in configuration ¢ of cellular space Z = (G, d, N) is defined by N(c, m) =
¢({m} + N). Then N has a natural ordering induced by N.

DerintTioN 6. The global transition function F: C — C of cellular space
Z is defined by (F(c))(m) = f(N(c, m)), for all m e Z% By Ft, t a positive
integer, we shall mean the t-fold composition of F defined’ recursively by
Fi(c) = F(c) and FY(c) = F(F*™Y(c)). Let @, be the set of global transition
functions for d-D cellular spaces.

Finally, we are in a position to define the principal tool used in this
investigation, i.e., simulation.

DermniTioN 7. Let Z; and Z, be d-D cellular spaces with sets of con-
figurations Cy and C,, respectively, and global transition functions F; and
F, , respectively. Let k, and &, be positive integers. Then Z, simulates Z, in
kyfk, times real time if and only if there exist effectively computable and
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injective mapping G:C;— C, and effectively computable function
g: @, — @, such that

F¥(G(c) = GF(e)),

where F, = g(F,). We shall be interested in the following three cases:
(1) by = 1, ky = k > 1 (k times real time); (2) ky =k > 1, ky = 1 (1/k times
real time); (3) ky = ky = 1 (real time). If Z, simulates Z, in 1/k times real
time, we shall call Z, a k-speed-up (or just speed-up) of Z .

1I1. NEIGHBORHOOD REDUCTION AND SPEED-UP

The definition of cellular space permits neighborhoods of all sizes and
shapes. Here we search for neighborhoods which contain as few cells as
possible. That is, given cellular space Z, we want a cellular space Z’ which
simulates Z but which has a smaller neighborhood. We begin by exhibiting
a theorem which states that an arbitrary neighborhood can be reduced to an
H, neighborhood (i.e., to the von Neumann neighborhood in the 2-D case),
at a cost of time and state-set size. This is of interest since much of the
previous work in cellular spaces has used the von Neumann neighborhood.
However, the theorem will be extended to a similar result for an even smaller
neighborhood, the K{? neighborhood, which is minimum for d-D spaces.
Finally the time cost will be proved unnecessary, at the expense of a still
larger stste set, and, in fact, speed-ups will be demonstrated possible, even
in spaces with he minimal K; template.

To aid in understanding the following theorem, certain convenient
template nomenclature is defined and illustrated by example in Fig. 2.
Let v(T) be the negative extent tuple for set T € Z% defined for 0 < ¢ < d— .]
by

v = IT{};}'} {t}.

(It should be clear from context whether a pair of vertical bars indicates
the absolute value of an integer, the norm of a d-tuple, or the cardinality
of a set). Define v'(T) to be the positive extent tuple for set T € Z? given by

v = max {#:}-

Note that, if T is a template, ; > 0O and v, > 0. Let w(T) = v(T) + v'(T)
denote the total extent tuple for set T e Z3. We shall refer to v, v/, and w
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as extent tuples. Finally, from the extent tuples v and v/, define the minimal
prism P(T) for set TeZéby P = {a| —v; < a; < v/}. The dashed line in
Fig. 2 indicates the minimal prism for the template shown.

____________ .
0 5 v
i :l:
. .
]
=(2,2)
=l % y'= .
v
i we .4
[N N EOSU

Fic. 2. Template nomenclature.

Turorem 3.1. For an arbitrary d-D (T, r) cellular space Z, there exists a
d-D (H, , 5) cellular space Z’ which simulates Z in m times real time, where,
for extent tuples v(T), v'(T), and w(T),

da—1
m =Y max(v;,v;),
=0
and s = s;_y(S4_g + 1)72 with s; defined recursively for —1 <i<d—1by

S, =1,
5o = r(r + 1),

8 = SiafSig + B0,

Proof. Successive pooling of the information in each dimension is the
idea behind this proof. We prove the theorem for only the 2-D case here
and leave the straightforward induction to the d-D case for the interested
reader. Let Z have transition function f and state set Q. The proof is in two
steps, one for reduction in each dimension.

Step 1. Reduce Z to (Ty, r(r + 1)) cellular space Z; , where T is as
illustrated in Fig. 3, by supplying each cell in Z; with states of the set
Q) = 0¥ X Q x Of, where Q; = Q U {b} and b s a specially designated
state. For each cell in Z in state g € Q, there is a corresponding cell in Z; set
to state gj; = (by.., b, ¢, b,..., b). Z; is supplied with a transition function f;
which “fills in the blanks” b of gy, as follows:
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Number the positions of the (w, + 1)-tuple ¢j; from 0 to w,, from left
to right (then g is in position v,"). Let cell D be in state g;; . Then f; changes
q;, to g, = (b, b, 7_11—', g, v, b,..., b) where -z?
in the cell above (i.e., the positive 1 direction) cell D and v, is the
value of position ;" in the cell below D. Similarly, f, changes g}, to

" is the value of position v,’

@y = (byes b, 0, — 1,0, ¢, v, 0 + 1,5,..., b),

and so forth until ¢7, contains no symbols b, where y = max(v, , v,"). Note
that this process requires max(v; , ;") steps.

F1e. 3. Template Ty .

Then ¢y, contains the value of position v, of every cell up to-and including
the cell 7" cells above D and of every cell up to and including the cell v,
cells below D. That is, the neighborhood state of a cell in Z; in state g;,
contains at least the information contained in a neighborhood state of a cell
in state ¢ in Z. Transition function f; selects this information, acts on it as
would f, and resets the &’s all in one additional step. Thus Z; simulates Z

_ with the given number of states.

Step 2. Reduce Z; to (H,, so(sq + 1)¥0%) cellular space Z, where
so = r(r -+ 1)*1. Then identify Z’ with Z,. This can be accomplished in a
manner analogous to that used for reducing Z to Z; in Step 1. Each state in
Z, is of the set Q," = Q%' 1x Q" x O~ where Q, = O;' U {B}, with B~ b
a specially designated state. For each cell in Z; in state g;, €O, there is a
cell in Z, in state g5; = (B,..., B, ¢3,,, B,..., B) € Q,’ and f, fills in the blanks
B, just as did f; for Z,, to obtain ¢;,, where 2 = max(y, — 1, vy’ — 1).
The Z, neighborhood thus contains the information in a Z; neighborhood,
and f, is designed to act on this information to simulate Z; and hence Z.
The blank-filling process requires z steps and one step is needed to reset the
B’s.

Clearly, Step 2 can follow Step 1 immediately if the final reset
operation of Step 1 is omitted. Then filling all blanks b and B requires
max(2; , v;) + max(y, — 1, vy’ — 1) steps and resetting them requires one
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step. The simulation of one step of f occurs during the reset step. Hence Z
is simulated in m times real time where

m =1+ max(v, , ;") + max(v, — 1,9’ — 1) = max(¢,, v,’) + max(z, , 7).

Q.E.D.

COROLLARY 3.1.1. For an arbitrary d-D (T, r) cellular space Z, there
exists a d-D (H, , s) cellular space Z' which simulates Z in m times real time,
where m = da, for

o = max || t],
teT

and s < (r + d), for n = Qa4 1)* = | ]|,

Proof. For s; defined as in Theorem 3.1, s; = s, 4(s;y + 1)*a-0+0 <
Si_a(sicy + 12 < (siy + 1)»*. In  particular, s, <(r + 1)?+1  4nd
5y < (so + 1)2+1. But, for positive integers x and @, (x* + 1) < (x + 1) So
5 <(r+ 2)@+1* Induction on the index 7 of 5; gives s; < (r +i+ [)Ec+b™,
The corollary follows from s = 54 3(s4-2 + 1)7% < $g3 - Q.E.D.

Another corollary to Theorem 3.1 is immediate from the method of proof
there: For every 7 for which v,/ = 0, one cell can be removed from the H,
template in the theorem. In particular, the cell at (0, 0,..., ¢,..., 0) can be
removed. Similarly, for every 7 for which v, = 0, the cell at (0, 0,..., —1,..., 0)
can be removed. Thus, if the origin of template T falls on a face of its minimal
prism, then no information-gathering “arm” is required 'in the simulating
H, template in the direction perpendicular to this face. One might be led
from such considerations to the belief that the position of the origin in a
template indicates the possible directions of information flow in a cellular
space. For example, the KV template {0, 1} seems to imply that information
can be transferred from right to left only—i.e., in general, the minimal
1-D template is the H{¥ template. But these ideas are scotched in the next
theorems.

TueoreM 3.2. There is a (K, , s) cellular space Z' which simulates a given
(H, , r) cellular space Z in (d + 1) times real time, where Z and Z' are d-D
and s = r{r + 1)%+L

Proof. As in the proof of Theorem 3.1, each cell of Z” has a state set
partitioned into enough coordinates to contain sufficient information about
an H, neighborhood to simulate Z. Note that by passing information via
state coordinates, a K; neighborhood can see in m time steps what a K,
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neighborhood sees in one step. We only require that m be large enough
for K, to contain a set of cells of the shape H, .

Consider the set H; = {h + e || h| < 1}, where e = (1, 1,..,, 1). Thus,
HCH =h|d—1< |h|<d+ 11k 200 z<d} Therefore
in d+ 1 steps (d+ 1)K, = K;,; DH, . In d steps dK, = K, includes
the set H' ={h'|d —1 < |h'| <d, b’ >0} NnH,PH, . Each state in
Z' needs a coordinate for one state of Z and a coordinate for each element of
H,'. Utilizing a blank symbol as before, we thus require s = r(r 4 1)L,
But | H,' | = | H, | — (the number of points in H; with coordinates of form
©,0,..,1,.,0)=|H|—d=Q2d+1)—d=d+ 1. Q.E.D.

THeOREM 3.3. There is an (L, , 5) cellular space Z' which simulates a given
(J1,7) cellular space Z in 2 times real time, where Z and Z' are d — D and

s = r(r + 1)2-L

Proof. We proceed as in the proof above. Thus for e = (1, 1,..., 1),
Ji=fatellal<l}={"|0<]a|<2 a4’ >0,0<i<d} There-
fore in two steps, 2L, =L, = J,, and in one step L, includes J," =
ajo<al<l,e/>0DJ. In fact, J;/ =L, and hence includes
point 0. Since an extra coordinate is not required for 0, then s = r(r + 1)lli-1,
But | L, | = 24 Q.E.D.

Remark 1. Both simulations above “slide”” in time. That is, the simulated
configuration appears to move with respect to the origin of Z’ whereas it
is stationary with respect to the origin of Z. However, the amount of slip
is effectively determined. It is interesting to notice that, if 0 is not required
to be a template element, then the necessary template size for simulation of
arbitrary d — D cellular spaces can be reduced even further to d. We let
the reader check that this is true by imitation of the simulations above.

Remark 2. Clearly there are numerous isomorphisms of the two
simulations above obtained simply by “rotations” of the L, or K templates. |
In fact, there are 2¢ such straightforward isomorphisms in each case.

Apply Theorem 3.2 to Corollary 3.1.1 to obtain the next result.

THEOREM 3.4. For an arbitrary d — D (T, r) cellular space Z, there exists
ad— D (K, ,s) cellular space Z' which simulates Z tn m times real time where
m=d(d+ Do, for a=maxerltll and s <((r+ d)" + 1)*% for
n = (20 4 1)%

Note that the cost of a reduced neighborhood in the simulations thus far
introduced is not only an enlarged state set but also a time slow-down.
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In the simulations below we show how to reduce the number of neighbors
at a cost of increased state set cardinality only. This is obtained by a many-
one correspondence between simulated and simulating cellular spaces.
That is, a set of cells in Z will be mapped into a single cell of Z’. Not only
can real time be maintained with reduced neighborhood but speed-ups can
be obtained.

We will need the following lemma which is adapted from Cole (1969).
The idea is to use a homomorphism 4 to “spread out” a desired template
T’ of a simulating space Z’. Then one can think of overlaying cells in a space
Z with the spread-out template A(7") = {h(t') | t' € T"}. The problem is to
find a set K of points with which to augment each point of A(7”) so that
the following holds: The set of cells A(t') + K, treated as one cell with
template (7”) + K, has access to as much information in one time step as
has the set of cells A(t') + K in k time steps with template T of the simulated
space Z. The following condition on % and K is sufficient in the sense that
if it is satisfied then it is a straightforward matter to design an appropriate
transition function for the simulating space Z'.

LemMa 3.5. Let (T,v) and (T',r') be d — D cellular spaces Z and Z',
respectively. Let h be an injective homomorphism from the additive group Z°
into Z8, and let K C Z% be a finite set of points. Define the state set of a cell in
Z' at point x to be the Cartesian product of the state sets of the cells at points in
{h(x)} + K in Z. Then a sufficient condition that a transition function exists
for simulation of Z by Z' in 1/k times real time is that

WT) + K2QkT + K.

Proof. Let Z, be the cell in Z at p. Clearly, the state of Z, at time 4 &
is completely determined by the states of Z, such that q € {p} + £T. In
particular, the state of each component Z,,,, of Z,’, a € K, is completely
determined in % steps By the states of Z, , q € {h(x)} + {a} 4 A7. Thusin %
steps, the next state of Z,’ is determined by the cells in Z at {h(x)} + K + £T.

But the next state of Z,’ is determined by the states of cellsin Z”" at {x} - T".
Each one of these cells is the Cartesian product of cells in Z at {A(x 4 t)} 4+ K.
Hence Z,’ can be computed if A({x}+ T') + K2 {h(x)} + K + kT.
Since h is a homomorphism, A({x} + T') = {h(x)} + A(T’) and the
conditionbecomes 2(T’) + K 2 K + kT. Q.E.D.

THEOREM 3.6. For an arbitrary (T,7) cellular space Z, there is a (], . s)
cellular space Z' which simulates Z in 1]k times real time, where Z and Z' are
d — D and s = r'/P*DI for k an arbitrary positive integer.
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Proof. Define /& and K as done below to satisfy the condition of Lemma
3.5. Then a cell in Z' at x will be the “macrocell” of cells in Z at {A(x)} + K.
In particular, form 47 and let K = P(kT). Then # is defined as follows:

h((%g , %y yeeer Xg_1)) = (Ug¥y , Xy 5eny Ug_1%g_1)s

where u; = max(v, , v;') for extent tuples v and v’ of 2T. These definitions
for & and K ensure that A(J;) + K2 kT + K. This is so because
W)+ K={a| —2v; < a; <v;+ v, ifv; > v and —v; — v/ < a; < 20/
else} D{a| —2v; < a; < 2v/}. But P(kT) 2 kT; hence 2P D kT + K where
2P = {b| —2v; < b; < 2v,}. Thus, by Lemma 3.5, there exists a transition

function such that Z’ simulates Z with a k-speed-up, and s = X1, where
| K| =]|P]| Q.E.D.

COROLLARY 3.6.1. For any (T,r) d — D cellular space Z there is an
(Ly,s) d— D cellular space Z which simulates Z in 1]k times real time, for

arbitrary positive integer k.

Proof. Use Theorem 3.6 to obtain space Z” which simulates Z in 1 /2}e
times real time. Then apply Theorem 3.3 to Z”. Q.E.D.

It is possible, but surprisingly difficult, to reduce a cellular space with the
Moore template to a cellular space with the von Neumann template. Cole
(1969) has shown that A(x) = (242 + 1)x and K = Hg + [z satisfy the
condition of Lemma 3.5 for 2 = 1 and dimension 4. Hence there is an
(H, , ") cellular space which simulates a given' (J; , ) cellular space in real
time, with # = | Hz + Js |- This result is improved below, after intro-
duction of a new class of templates.

Let the length of x € Z* be the positive real number

I®) = (5,2 + % 4 o + 22 )2
Then S, is the class of templates defined by
5 = {x | (x) < a}
for @ > 0 a real number.
Tueorem 3.7. For anarbitraryd — D (], , r) cellular space Z, there exists

@ d— D (H,,r) cellular space Z' which simulates Z in real time, with
n=|S?| and a = 2|d*?|.
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Proof. Define h(x) = cx, ¢ =2d, and K = S,,a = 2[d®?. Since
S, + J, C Sgya2, we shall demonstrate that S, g Ch(Hy) + S, and,
hence, that # and K satisfy Lemma 3.5 for &£ = 1.

Let [ = I(x). Then for [ < a, x€ S, Ch(H;) + S,. So assume [ > a.
We wish to find d-tuples b € S, and e € h(H,) such that x = b + e. Let x,
be an element of x such that | x, | > x;, 0 <7 < d — 1. Without loss of
generality, take p =0 and x, > 0. Then define e = (¢, 0, 0,..., 0) and
b = (% — ¢, %, , X3 5.0, X¥4_). Clearly, eeh(H;). Hence we must show
be S, or, since (I(b))? = I2 — 2cxy + ¢?, that

12— 2cxg + 2 < a? (1

for all x such that a < I < a + d'/2

For a given length [ the minimum value for x, is min X, = [Zjd*12].
Define 8(1) = 12 — 2cl/d'? + (c® — a?), for parameter d. If 8(1) < 0, then
(1) is valid for x, = min x, , since min x, = I/d"/% If (1) is valid for min x, ,
then it is true for all x of the same length [ but larger x, . Hence it suffices to
prove §() <0, a <! < a+ d'2

Note that §(I) is an upward opening parabola, with a vertex at [ — cd™1/2,
§ = ¢%d — 1)/d — a® We shall want 8(/) = 0 for some [ hence require
a® > c3(d — 1)/d. Let I, be the length such that 3(/;) = 0. Then () <0
if 0<i<l. Let l,>=a-+d/2 Then &a- d/*) <0 implies
(@ + dr22 — 2ed Y ¥a + 4*/%) + (¢ — a?) < 0. With ¢ = 2d, solve for a
to get the condition @ > 2d%/2 — 3d*/2[2. The choice a = 2|d37?| satisfies
this condition and also the condition that a? > ¢*(d — 1)/d. Q.E.D.

CoRrOLLARY 3.7.1. For any d — D (T,r) cellular space Z there exists a
d — D (H, , s) cellular space Z' which simulates Z in 1]k times real time, for
arbitrary positive integer k.

Take Corollary 3.7.1 with a k(d + 1)-speed-up and apply Theorem 3.2
to obtain the concluding result of this section.

COROLLARY 3.7.2. For any d — D (T, r) cellular space Z there exists a
d — D (K, ,s) cellular space Z' which simulates Z in 1]k times real time, for
arbitrary positive integer k.

IV. STATE-SET REDUCTION

In the preceding section we substituted large cells—i.e., cells with a large
number of states—with small neighborhoods for small cells with large
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neighborhoods. Now we show how to substitute small cells with large
neighborhoods for large cells with small neighborhoods. In particular, it
will be shown that any cellular space with the von Neumann neighborhood
can be reduced to a binary cellular space (i.e., with only two states per cell).
The result also holds for cellular spaces with arbitrary neighborhood because
of Corollary 3.7.1. We assume the H,; template only for ease of presentation.

The proof of the main result of this section, Theorem 4.2, requires a
special type of number M for uniquely specifying position information in a
simulating cellular space. Assume it is binary and of length . Then we require
M to be such that, if its bits are evenly spaced around a circle, each substring
of m successive bits is distinct. For example, the number 00111 is such a
number. The important point is that each position 7,0 <i <n— 1 of M
is uniquely coded by the substring at positions {(Z + j)mod 7 |0 <j <m — 1}
if # < 2™. Such a number is called a binary shift-register sequence of degree m
(see, e.g., Golomb (1967)). It is said to be zero-free if it does not contain the
substring 0™ (i.e., a substring of m copies of symbol 0).

Lemma 4.1 (Golomb). There is a binary zero-free shift-register sequen‘ce
of degree m and length n, for any m and n such that n < 2™

Note that by juxtaposing copies of a shift-register sequence, one does not
have to return to the beginning of a sequence to complete a cycle. The
necessary bits are the initial bits of the succeeding sequence. This is the
mode of “cycling” used in the following proof.

TuroreM 4.2. For an arbitrary d— D (Hy , r) cellular space Z, there exists
a d— D (T',2) cellular space Z' which simulates Z in real time, where
| T'| = 4nd — 2d + m — 1 for n the minimum integer such that v < 2" —n
and m the minimum integer such that n < 2™.

Proof. Solve for m and n in the inequalities of the theorem. We shall
justify these inequalities below. Then Z ’is designed to have a distinct 1 — D
array of cells of length 2n for each cell in Z. The states of 7z of these cells
(every other one) represent a binary code for the state of the cell in Z they
simulate. The other 7 cells provide position information to the transition
function f' of Z'.

More specifically, let a/x denote the point (@, Xy , X5 ..., ¥g_1), Where
x = (%, Xy, ¥y oy ¥g3) 20d @ is an integer; then xy/x = x. Let ¢ and ¢’
be configurations in Z and Z’, respectively. Then string

0, = ¢'(2nmy/m) ¢'(2nmy + 2)[m) - c'(2n(my + 1) — 2)/m)
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is a binary “state code” for ¢(my/m). The cells of Z" in the set 3 ; (m) =
{2nmom, (2nmy + 2)/m,..., (2n(my + 1) — 2)/m} are called “state-code
cells”, for any m in Z. Z’ has two states, 0 and 1; assume O is the quiescent
state of Z'. Then o, = 07 is the code for the quiescent state of Z.

Let string

oy = ¢(2nmy + 1)[m) ¢'((2nm, + 3)/m) -+ ¢'(2n(my +- 1) — 1)/m)

be called the “position code” of Z’. The same position code is used for each
m in Z. All cells which are not state-code cells are thus “position-code cells”.
The position code is taken to be a binary zero-free shift-register sequence
of degree m and length #. Lemma 4.1 guarantees the existence of such a
sequence for 7 < 2™. We insist on zero-free sequences to avoid the confusion
between O™ as part of a position code and as part of (sup(cy))’, where ¢, is
the initial configuration of Z'. There are n distinct cyclic permutations of
the position code of Z'. We insist that these 7 codes not be used as state
codes. Hence the condition 7 -+ 7z < 2% 'This plus the requirement that 0"
be the quiescent state code are the only conditions on the choice of state
codes.

Note that the position of a state-code cell in a state code is uniquely
specified by the states of m position-code cells. In particular, let the cell at
x e sup(c’) be a state-code cell in position ¢ of a state code, 0 < 1 <n— 1.
Then the cells in set Zy(x) = {(xo + 1)/, (%o + 3)/%,.., (w0 + 2m — 1)/x}
are position-code cells and the string

¢'(%0 -+ 1)/x) €' (%0 + 3)/x) - ¢'(% + 2m — 1)[x)

is a unique code for position 1.

Give Z' the template T = ((y(Hy) + Z1(0)) — 21(0)) U Z(0), where
y maps any point m in Z into point 2mmyim in Z'. Thus | T'| =
n|H | +Qd— 1)n—1)+m=4dnd —2d +m— 1. If a cell is a state-
code cell, then 7" supplies sufficient information to f for simulation of Z.
If a cell is a position-code cell in sup(c’), then f does not change its state.
The two types of cells can be distinguished by f’ from the information
provided by template elements 23(0): If the string of state symbols from
these cells is a state code, then the cell is a state-code cell. If the string is
a cyclic permutation of the position code, then the cell is a position-code
cell.

Let sup #(c,) be the support of the initial configuration of Z augmented
by a boundary of quiescent cells—i.e., sup #(co) = sup(co) + H{®. Then
the initial configuration ¢,’ in Z’ consists of the state codes and position codes



CELLULAR COMPLEXITY TRADE-OFFS 481

for all cells in sup #(c,) and is everywhere else quiescent. Since | sup(F(c))|
may, in general, be larger than | sup(c)| in Z, the position code in Z’ must
be propagated throughout the space. But the template 7" supplies sufficient
information for f’ to spread the position code:

Consider a cell A4, at m in Z'. If cells at {m} + 2,(0) are quiescent,
then 4, is not a state-code cell in sup(c’). If, in addition, the cells at
({m} + Z,(0)) — Z,(0) contain nonquiescent states but not the position
code, then 4, is a position-code cell not in sup(c’) and hence not yet coded
as part of the position code. If, however, {m} 4 7" contains the position
code, then f’ codes A, depending on the placement of the position code in
its neighborhood. We complete thz proof by sketching one possible scheme
for this calculation:

If ({m}+ Z(x)) — Zy(x), for xeH; —{0, —1/0, 1/0}), contains the
position code then the next state of 4, is simply the present state of Ay -
If, for x€{—1/0, 1/0}, ({m} + Zj(x)) — Zy(x) contains the position code,
then the next state of 4, is the present state of A pn/x - Q.E.D:

V. SUMMARY

This paper is an initial study of cellular automata on a general mathe-
matical level—in particular, only the number of states per cell and the
neighborhood template of any of the cellular automata studied are assumed
given. Let p be the number of cells in a template and let ¢ be the number of
states per cell. Then the complexity measure pg has been the object of study
here.

The K, neighborhood templates have been shown to be minimal, 1n
general. Thus, in the class of d-dimensional cellular automata, there is always
a cellular automaton with complexity product (d 4 1) ¢’ which simulates an
arbitrary cellular automaton with product pg, where ¢’ > g and p is arbitrary.
On the other hand, in the class of d-dimensional cellular automata, we have
shown that there is always a cellular automaton with complexity measure 2p’
which simulates an arbitrary cellular automaton with product pg, with
p" > p and q arbitrary. ‘

Finally, we have proved the existence of k-speed-ups. That is, in the class
of d-dimensional cellular automaton, there is always a cellular automaton
with complexity p’q’ which simulates in 1/k times real time an arbitrary
cellular automaton with complexity pg, with ¢’ > ¢,p’ < p, and k an
arbitrary positive integer.

Special applications of the general theory herein lead to quite large
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reductions in the complexity product. The specialization to cellular automata
which compute partial recursive functions is a good example and is treated

in detail in Smith (1969).
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