SIMPLE COMPUTATION-UNIVERSAL CELLULAR SPACES
AND SELF-REPRODUCTION

FOCS 4 (\9¢eR)
21~ 2777

Alvy Ray Smith III
Electrical Engineering Department

Stanford University

Stanford, Califormia

Summasz

Cellular spaces computationally equivalent to
any given Turing machine are exhibited which are
simple in the sense that each cell has only a
small number of states and a small neighborhood.
Neighborhood reduction theorems are derived in
this interest, and several simple computation-
universal cellular spaces are presented. Condi-
tions for computation-universality of a cellular
space are investigated, and, in particular, the
conjecture that unbounded but boundable propaga=-
tion in a space is a sufficient condition is re-
futed. Finally, the computation-universal spaces
derived in the study are used to introduce, via
recursive function theory, examples of simple
self-reproducing universal Turing machine config=
urations in one and two dimensions.

Introduction

Von Neumann was the first to use automata
theory to study the logical intricaciis.or biolog-
ical reproduction. In particular, he' detailed a
cellular space conceived as an infinite chessboard
of identical finite automata--one automaton (cell)
per square=-=which supported an activity inter-
preted as self-reproduction. In the process he
also demonstrated the computational power of his
cellular space.

Both the cellular space (29 states per cell)
and the self-reproducing, computing construction
(40,000 cells or so) of von Neumann are q%ita com=
plex ﬂnd have led others (Thatcher?, Codd3, and
Arbib™) to simplify and generalize. This paper is
also along these lines; the terminology, reviewed
below, is essentially that of Thatcher and Codd.

Although more general definitions are possi-
ble, here we will consider only cellular spaces of
the infinite chessboard variety--a one-dimensional
cellular space corresponding to one row of such a
chessboard. Associated with each cell C of a cel-
lular space Z is a neighborhood consisting of C
itself and a finite set of cells in fixed posi-
tions relative to C. In this paper, all cells in
a given cellular space will have neighborhoods of
the same shape designated by a subset of chess-
board squares called a template, such as

=

where we hatch the cell whose neighborhood this
is. Thus the neighborhood of cell C is determined
by translating the template associated with Z

269

until the hatched template origin covers cell C.

"All cells under the template squares then form

the neighborhood of C.

The state of each cell in a given cellular
space at time t+1 is uniquely determined by the
transition function f of the cell acting on the
neighborhood state of the cell at time t. All
cells operate synchronously under action of the

lobal transition function F which maps any one
cuﬁzzgggaEIon--i.a., an aIluwabLa assignment of
states to all cells--into another. Thus F(c)(C)

= f(N(c,C)) where C is a cell with neighborhood
state N(c,C) in configuration c¢. Given an ini-
tial configuration c,, F determines a sequence of
configurations, the propagation (c,):

co'cl, .oo’ct,loo
where c, ., = Flc,) for all t.

There is a distinguished state g., the qui
escent state, in each cell C such tha f(N(c?ET}
= if is the state of every cell in the
neighborhood of C. A configuration ¢ is re-
stricted to have finite support; i.e., sup(c),
the set of nonquiescent cells, is finite. Usu-
ally, the term "conf ation c¢" will be used
loosely to mean c|sup(c). A configuration ¢ is
passive if F(e) = c. A configuration ¢' is a
subco;{égpration of ¢ if c|sup(c') = c'|sup(c!).

or configuration ¢, the propagation (c) is
bounded if for all t, Cesup(c), and C'esup(F°(e)),
It holds that max p(C,C!)<K for Manhattan-city-

C,C!
block metric p and integer K. Otherwise, (c) is
unbounded . <€) is boundable if there exists a

disjoInt configuratIon d such that {cud) is
bounded, and unboundable if no such d exists. By
disjoint configurations ¢ and d we mean their
supports are disjoint. By the notation cud we
mean the union of ¢ and d, defined by
c(C) if Cesup(c)
d(C) if Cesup(d)

else

(evd)(c) =

if ¢ and d are disjoint.
If ¢ and d are disjoint, then ¢ passes
information to d if there is a time t such that

F¥(cud)|S # F¥(d)|S where S = sup(F¥(d)). This
definition will be adequate here but it should be
noted that it must be modified slightly to handle
some of the cellular space phenomena recorded in
the literature (notably the "pﬂshing“ of one con-
figuration by another in Arbib“),

In the sequel, we will be representing sym-
bols of a Turing machine tape by states of cells
in a cellular space. Here it will suffice to have
only one cell represent each square, but in gen-
eral a group of cells will represent a single tape
square. Hence T, the set of Turing machine tapes
on alphabet X corresponds to an effectively de-
fined subset of the set of configurations, the
tape configurations, over cellular-space state

set WcQ where Q is the state set of the space.
Let CT be the set of tape configurations for a

cellui¥r spaciams Then
fective procedure h.
Iet g:T-T be a function mapping tapes into
tapes. Then we say ¢ computes g if there exists a
configuration ¢ such that, for any tape configura-
tion deCy, g(h(d)) is defined iff there exists a

T is obtained from GT by ef=-

time t such that h(Ft(cUd)lsup(CT)) = g(h(d))

where sup(Cq) = U sup(d) and Ft(;bd)lsup(CT) does

deCT

not pass information to Ft(cud)lsup(CT), and there

oxists an effective procedure for determining when
a computation is completed. We leave this proce-
dure unspecified in the definition since it may
differ with the context (e.g., the "computation
complete" signal might be a prespecified cell in a
prespecified state or a prespecified pattern of
states in a prespecified region of the space).
Note that this definition does not require that a
configuration which computes become passive.

A cellular space Z is computation universal
if for any Turing machine computable function g
there exists a configuration ¢ in Z such that ¢
computes g.

A Turing machine will be the type that moves
right (R) or left (L) at each time step. Its as-
sociated state table is assumed to be of the fol-
lowing form (only one typical entry shown):

state
qo ql e o = qu—l
*a
x xi@/q|j
symbol - @e{R,L}
o 0gigm-1
i 0<jign-1,
xm-l

This will be referred to as an (m,n) Turing ma-
chine,

The cellular spaces of von Neumann, Thatcher,
and Codd as well_as those introduced in this paper
are what Holland’ terms Moore-type spaces--i.e.,
there is a non-zero delay associated with every
transition. Mealy-type spaces gzero delay for
some states) are used by Wagner® and Arbib. Wagner
does not treat self-reproduction, but he does study
computation by embedding multi-headed machines
called "spider automata" in Mealy-type spaces
("modular computers") with cells of considerable
complexity. Since a one-legged spider is a Turing
machine, his work is related to that below al-
though his aim is not specifically that of cell
simplicity.

270

Simple Computation-Universal Cellular Spaces

Theorem 1. For an arbitrary (m,n) Turing machine,

there exists a 2-dimensional, 7-neighbor, max(m+l,

n+l)-state cellular space which simulates it in
real time,

Proofs, Let T be an arbitrary (m,n) Turing ma-
chine. A cellular space ZT with neighborhood
template

[

Z

is constructed which simulates T as follows. Each
cell of Zp is provided with a set Q of M =
max(m+1,n+1) states. Without loss of generality,
let Q = {0,1,2,...,M-1} so that (i+l) corresponds
to symbol x, of T for 0<i<(m-1) and state (j+1)
corresponds~to Turing machine state q, for 0<j
<(n-1), 0 is the quiescent state ofJZ_ and never
corresponds to a Turing machine state or symbol.
The geometry of ZT will be utilized to distinguish

a cell whose state QleA = {l,..4,m} corresponds to

a Turing machine symbol from a cell whose state
Q%(B = {ly+e.,n} corresponds to a Turing machine
state.

We cause Z, to simulate T by embedding a con-
figuration in it which "looks like" T. That is,
one row of cells in Zp is the "tape" of the embed-
ded Turing machine--one cell of Zr per tape square
of T--and one cell in an adjacent row is the
"head". Thus the embedded Turing machine configu-
ration will have the following form at any one in-
stant of time: :

SN B [(U o o

‘ |Cell a—e=l

|E§| I i
= —+——=+——-

—!]__!_—] scannad ceri:l 5_]

As indicated in the diagram, a and b are always
labels for the cells to the left and right, re-
spectively, of the head cell h. All other symbols
are state assignments: SoeA is always the state
of the scanned cell s; S €A is always the state of
the tape cell at distance |k} from the scanned
cell in the direction determined by the sign of k
as indicated; and PeB is the state of head cell h.
C, is used to designate the cell immediately to
the ye(R,L} of a finite embedded tape. A1l cells
other than the head and tape cells are assumed to
be in the quiescent state 0. Thus Cg and Cy, are
always in state 0.

Head cell h is made to ™move®™ along the tape
subconfiguration simulating the head moves of T by
suftable sp@eification of the transition function f
for a cell in Zpe This is simply done. Unless
the cell is a, b, h, s, Cg, or Cy, then it does
not change state. For these six cases, let the
Turing machine state-table entry for symbol Xp and

state q, be denoted (x,,q;)s Then f is given for
cells a, b, h, s, Cp, and Cp, as indicated below
when (x_,q,) = xp@/qq.

neighborhood next state

cell C state of C of C conditions
P
7 S, = r+l, peA
s St sgf 5 p g
= P = t+]
0 |0 |0

0
F
h 0 [PZ10 0 in all cases
St 150[51
’0_
0 if @ = R
=
a 0 o//P
(q+1) if @ = L, (q+1)eB
Ex 157 [8g
> (
q+l) ife =R
b P ﬁo
0 ife =1L
So P12
0
a s [i4o 1 leA is th
3 e
R k 4;2 "blank" symbol
0 |0 |0
0
//
CL 0 €L§Sk 1 as for GR
0o |0 |0

The last two entries are "tape extenders®™ which
convert the quiescent state to the blank symbol at
either end of the necessarily finite embedded tape
configuration. This is necessary since the simu-
lated Turing machine may need an infinite tape.
Some one state Q* is designated the starting
state of T. Corresponding to Q% is a state weB in
each cell of Zp. Thus the simulation of T in Zp is
set up as follows: +the non-blank portion of the
(finite) initial tape of T is embedded in one row
of ZT' The cell above the cell corresponding to

the leftmost non-blank square is set to state w
and hence represents the initial position of the
tape head of T. Then the global transition func-
tion F causes the cellular tape subconfiguration
to be modified (in a real-time simulation) just as
would be the tape of T.

Remark. The 7-neighbor template above suggests
the symmetrically more elegant hexagonal tiling of
the infinite plane. Indeed such a "begehive" cel-
lular space can be used! to construct another
proof of Theorem 1l.

It is of interest to contrast the construc-
tion in the proof above, in which the cell design
depends on the Turing machine to be embedded, to
the cellular spaces of von Neumann, Thatcher,
Codd, and Arbib, in which any Turing machine can
be simulated once the cell design is set. However
the difference between the Turing-machine-depend-
ent cell constructions and the Turing-machine-
independent cell constructions is not too impor=-
tant in many cases since the embedded Turing ma-
chine of interest is often the universal machine,
as, for example, in the corollaries below. In
this case the machine-dependent cells are clearly
superior in the sense that all simulations are
real-time (or Malmost" real-time as will be speci-
fied in other theorems below), as opposed to the
very slow simulations in, say, the von Neumann
space., Of course, a real-time simulation of a uni-
versal Turing machine is not real-time with re=
spect to the original Turing machine simulated by
the universal machine,

Corollary 1.1 There exists a max(m+l,n+l)-state
computat§on—univarsal cagllular space for every
(m,n) universal Turing machine. .

Corolla 1.2 There exists a 7-state computation-
universaE cellular space in two dimensions.

Proof. Hinsky8 has found a (6,6) universal Turing
machine.

Previous work with infinite chessboard wvari-
eties of cellular spaces has often used the sym-
metric, nearest-neighbor, 5-cell neighborhood of

. von Neumann:

N

The T-neighbor spaces of the type used in proving
Theorem 1 can be replaced easily with spaces hav-
ing the von Neumann neighborhooed. In fact, it
will be shown that a chessboard space with any
neighborhood template can be simulated by another
space with at most five neighbors per cell (or, at
most three in one dimension). Any neighborhood
template has a minimal circumscribing rectangle
with nomenclature as indicated in this example:

.§

e i . .
aiR= Fizy
| 3
] T

|
| L
B e o

(Here d; =lband d, = 4, = dh = 1,)

2 3

In the theorem below, the notation (K,M) will
be used to represent the M-state cellular space
with template diagram X from the set of template
dlagrams with hatched template origins.

Theorem 2, Any (K,H) cellular space Z can be sim-
ulate Yy a

~]

d|+d’ d|+d| d +d
2] ,ee1) 3 Bineuen) 3 H1 ")

(1

%
£

cellular space Z', where dj or d{ is set to zero
and cell i is not included in the template if
d{ =0, 1 = 1,2,3,4. The simulation requires
max(di,dé)+max(d',dﬁ) times real time,

Proof. Let Z have transition function f and state
set Q. The proof is in two steps, one for reduc-
tion in each dimension:

Step 1. Reduce Z to Zy =

s
[17
T

14d
A1 s w1y %)
Ja T

by supplying each cell in
set Qi = SIXQII--.XQlTQxS}

4

Z, with states of the
x&lx...qu where

A
Qp = Q+{b} and b is g specially designated state.,

For each cell in Z in state q€Q, there is a corre-
sponding cell in Z1 set to state qile ! where

Q, = T O, TR, 5 Z, is supplied with a
transition function £

b of q{; as follows:
Number the positions of the (d§+dﬂ+1)-tupla

which "fills in the blanks"

q; from 0 to (dj+dﬁ), from left to right (then g

is in position di). Let cell C be in state q{l.

272

Then f, changes q), to il = (b,...,b,E},q,gé,b,

~seyb) where d3 is the value of positicn di in the

cell above C and gé is the value of positicn d; in

the cell below C. Similarly, fl changes qiz to

qu = (b,...,b,ds 1,35,q,g-3',g§£,b,...,b), and so
forth until qiy contains no symbols b, where y =
max(dj,dﬂ). Note that this process requires

1 r
max(dB,dh) steps.

5 of

Then qiy contains the value of position d
every cell up to and including the cell at di

cells above C and of every cell up to and includ-
ing the cell at dﬁ cells below C. That is, the

neighborhood state of a cell in Zl in state qiy

contains at least the information contained in a
neighborhood state of a cell in state g in Z, f;
selects this information, acts on it as would f,
and resets the b's all in one step.

Thus Z; simulates Z with the given number of
states. Clearly, if dj = 0, then Z1 need only

have states of the form Q] = OxQ xQXesexQ, and 2
1 3 i 1 k
“'_W—‘

%

dl
simulates Z with M(Ms+1) y states. A similar re-

sult holds if dﬂ =0,

Step 2. Reduce 2y to iy =
=

7
Z

”~

d.+d
4 | wwe1) 12

di+d
where N = M(M+1) 3 L. Tnen identity 2t » z,,
This can be accomplished in a manner exactly anal-
ogous to that used for reducing Z to Z1 in Step 1.
Each state in 22 is of the set

Qé - ngo e -xQQ.inxQQX- e -xQ2
et —_—
d d
1 ‘ 2
where Q = Qi+{B}, with B # b a specially desig-

nated state. For each cell in Z. in state qingi

1
there is a cell in Z5 in state Qi = (B,...,B,qiy,
B,.-.,B)tQé and f2 "fills in the blanks" B, Just
as did fl for Zl, to obtain qéz where z =

max(dl,da). The Z2 neighborhood thus contains the

information in a Z1 neighborhood, and f2 is de~-

signé® to ac®bn this information to simlate Zy

and hence Z. The blank-filling process requires

z steps and one step is needed to reset the B's,
Clearly, Step 2 can follow Step 1 immediately

if the final reset operation of Step 1 is omitted.

Then filling all blanks b and B requires max(dl,dz)

+max(d:;',dﬂ) Steps and resetting them requires one

step. The simulation of one step of f occurs dur-
ing the reset step, Hence Z is simulated with a
time slowdown of 1+max(dl,d2)+max{dj,dﬂ) =

max(dy,d))wmax(as,af).

Theorem 2 applied to the 7-state space of Cor=-
ollary 1.2 yields a S-neighbor space with 7(8)2
states (or, with only slight revision of the theo-
rem in this special case, 7(8) states)s In this
space, and, in fact, in all spaces of the type
introduced in the proof of Theorem 1, we can do
much better in the sense of fewer states as the
following theorem purports.

Theorem 3. For an arbitrary (m,ﬁ) Turing machine,
there exists a 2-dimensional, 5- eighbor, M-state
cellular space which simulates it (in four times
real time), where M = max(3m+1,n+1), i

Proof. Each symbol Xy of an arbitrary Turing ma-
chine T will be represented in S-neighbor cellular
space Z by a set of states {(3150),(31,1),(51,-1)}.

The configuration which similates T occupies two
Tows as in the proof of Theorem 1, but here the
information stored in that larger neighborhood
about right (R) or left (L) head moves is coded
into the enlarged state set {(si,b)}. Roughly,

b = 1 corresponds to R and b = -1 to L.

Suppose T is in state Q; reading symbol x‘j at

time t; and changes x. to x!, moves R (or L), and

J J
goes into state qi at t+l. Then Z will have a

state (si,O) corresponding to q and state {sJ,O)

corresponding to x,. Thus for some time t' and

J

quiescent state O there will be a configuration in
Z of the form (parentheses denote individual
cells):

bt «ee(0) (0) (si,o) (o)(o)...
...(su,o) (sv,O) (sJ,O) (sk,O) (sr,o)...
The top row is the "head"™ row and the bottom row is
the "tape" row. The simulation of the R move pro-
ceeds as follows (the L move proceeds analogously):
Lt vl O) L0) (si,o) (8 Y00 e

...(su,o) (sv,O) (35,1) (sk,O) (sr,O)...

273

t'42: ou(0) (0) (ai,O) (0)(0 Ji.s
...(su,o) (sv,O) (35,1) (sk,l) (sr,o)...
t143: we(0) (0) (s4,0) (8,00 (0)...
...(su,o) (sv,O) (35,1) (ak,l) (sr,o)...
ti+h: «eu(0) (0) (0) {s{,o) (0 Jusa
eee(s,0) (s,,0) (35,1) (sk,O) (sr,O)---
t'45: .o(0) (0) (0) (s;,o) (O Dass

...(su,O) (sv,O) (aj,o) (?*,b) (sr,O)...

Thus at t'+5 the space is already in the first
step of its four-step simulation of the next step
of T. It is a simple matter to specify a transi-
tion functien which accomplishes the simmlation
outlined. above.

A consequence of Theorem 3 is a 5eneighbor,
13-state computation-universal cellular space
obtained by applying the theorem to the (g,?) uni-
versal Turing machine exhibited by Minsky This
might be compared for simplicity to the 5-neighbor,

=-state space of Codd. Such a comparison is dif-
ficult since the 13-state computation-universal
configuration occuples two "rows" of the space
whereas the 8-state configuration caovers very many
more and computes very slowly-~-i.e., in much more
than four times real tims.

Utilization of only two rows of a 2-dimen-
sional space implies immediastely the existence of
a 169-state, l-dimensional computation-universal
cellular space, but Theorem l does better:

Theorem 4. For an arbitrary (m,n) Turing machine,
there exists a l-dimensional, 6-neighbor, max(m+1,
n+l)-state cellular space which simulates it in
real time,

Proof. Let T be an arbitrary (m,n) Turing machine.

en a cellular space Zp 1s designed to simulate T
by providing it with the following é-cell neigh-
borhood template:

LITAT]

The embedded Turing machine configuration is as
illustrated below; the tape squares occupy every
other cell in the space.

kel 11 :;;E:EET_-

The transition function f leaves the state of a
cell C unchanged except in the six cases a, s, h,
b; Cps and Cp (as in Theorem 1). The function f

is easily specified and is omitted here. It should
be noted that tape extenders are required here as
in TH¥orem 1%pe convert quiescent cells to blank
cells at the tape Mends".]

Corollary L.l There exists a l-dimensional,
max(m+1,n+1)-state computation-universal cellular
space for every (m,n) universal Turing machine T.

Corollary L.2 There exists a l-dimensional, 7-
state computation-universal cellular space.

Proof. Let T be Minsky's (6,6) universal Turing
machine,.

Similar to Theorem 3 for two dimensions is
Theorem 5 for one dimension.

Theorem 5, For an arbitrary (m,n) Turing machine,
there exists a l-dimensional, (m+2n)-state, 3=
neighbor cellular space which simulates it (in at
most twice real time).

Proof, Let T be an arbitrary (m,n) Turing machine.

Then a cellular space Zr which simulates T is de-
signed as follows: Provide Zp with this template:

HZR

and embed a Turing machine configuration'in Zp as
indicated below:

e 153[32|s1_-|? 3o [sllszl. ..
T T 1
a h s

The transition function f leaves the state of all
cells unchanged except in the cases a, h, and s.
It is a simple matter to fill in the details of
this function such that tape configurations like
...xoxqu2x3... simulating a right move into new

state q' after changing symbol x2
time as

soe xox.lq xzxj...
sse xoxlxz'q'xj... °
Similarly, a left move looks like this:
see xoxlq X2X3.-o
Iyt
sse xoxquxsz...

to xé appear in

eee xoq'xllex3u-o °

Thus two states, q and q', are needed to represent
each Turing machine stat&.

274

Conditions for Computation-Universality

Theorems 1-5 have provided several designs
for simple computation-universal cellular spaces.
The obvious question then is, what is the simplest
such space? That is, what are necessary and suf-
ficient conditions for computation-universality of
a space? This question is of special interest in
research on the origin-of-life problem, an area in
which Sellular automata approaches hold some prom-
ise "l 0

In particular, Codd has suggested that a nec=-
essary condition for computation-universality in a
cellular space is the existence of unbounded but
boundable propagation in the space. This condition
is proved to be not sufficient below, however,
after the presentation of two necessary conditions.
First we extend the definition of boundedness.

Definition. A propagation {c) is k-bounded effec-
tively if (c) is bounded by some integer X (as in

the definition of "bounded") and K can be effec-
tively determined. :

Definition. The k-bounding problem of a configu-
ration ¢ is to determine, 1n an effective manner,
an integer K, or an algoritim for finding K,
such that (c) is k-bounded effectively, or (2) that
(c) is unbounded. The bounding problem for a
cellular space Z is solvable I%, or all configu-
rations in Z, the k-bounding problem of the con-
figuration is solvable. The bounding problem for
Z is unsolvable if there exists a configuration in
Z with an unsolvable k-bounding problem.

Definition. The propagation problem of a config=
uration ¢ is to determine, in an effective manner,
whether there exists a time t at which the propa=

.gation (c) becomes pagsive--i.e., if there exists

t such that F¥(c) = Ft=1(c), The propagstion

roblem for a cellular space Z is solvable if, for
all configurations in Z, the propagation problem
of the configuration is solvable. The propagation
problem for Z is unsoclvable if there exists a con-
figuration in Z with an unsolvable propagation
problem.

Theorem 6. If the bounding problem of a cellular
space Z is solvable, then the prepagation problem
of Z is solvable.

Proof. If a configurstion ¢ in Z has unbounded
propagation, then {(c) never becomes passive. If
a configuration d has (d) k-bounded effectively
by K, and if F is the global transition function
of Z, then let R be a region in Z to which (d) is
confined for all time. Such an R can be effec-
tively determined since d and X are known. Sup-
pose R contains N cells and Z is an A-state cellu-
lar space. Then R has aN possible states, and an
effective procedure for solving the propagation
problem of d is as follows:

Observe R containing d at time O for at most

AN+1 time steps. If at any time t, Ost.sAN,

t+1l
Ft(d) =F "(d), then {d> becomes passive. If
this is not the case, then there must exist times

t, t', with t'>t+1, such that F*(d) = F'(d) and
F'(ap # F**Ma) £ ... #FV'"1(d). That is, since

A¥ 15 finite then {d) must become cyclic and hence
active for all time.

Theorem 7. A computation-universal cellular space
has an unsolvable propagation problem.

Proof. Let Z, be a computation-universal cellular
space. Then Ehere must exist a configuration d in

Zyy which computes fy, the function computed by H,
a Turing machine with an unsolvable halting prob-
lem. Hence it is impossible to determine whether
there is a passive configuration in {d) for some

time t.

Apply Theorem 6 to Theorem 7 to obtain
Corollagz 7.1 A computation-universal cellular
space has an unsolvable bounding problem.

Theorem 8. The existence of unbounded but bound-

able propagation in a cellular space is not suffi-
cient for computation-universality of the space.

Proof. Consider the 2-state, 3-neighbor cellular
space Z which has the template

zHa ‘

and the transition function f which leaves the state
of a cell unchanged except in these cases: f£(100)
= 0, £(110) = 0, and f(010) = 1, where f(xyz) = x'
gives the next state x' of the cells with states
as shown above. Define configurations ¢ and d on
integer coordinates by
1, x=0 l, x = +1
. and d(x) = { .

0, otherwise 0, otherwise
Then (c) 1is unbounded but {cUd) is not. However,
we now show that the bounding problem is solvable.

Let e be an initial configuration in the space
Z. Let K be the number of cells between ths left-
most 1 and the rightmost 1 in e, inclusive. Look
at the leftmost block of one or more l's in e and
let g be the state of the cell two cells left (thus
q =0at t =0). Then gi is the state of the cell
i cells to the right of the cell whose state is g
(thus q; = 0 at t = 0),

Lemma: If q = 1 at time t'>0 where q = O for
0<t<t', then {e) is unbounded.

Proof: There are two possibilities at time t':

qq, = 10 or ag, * 11, If aqg, = 10 at t', then

e(x) =

qqlqeq3 = 0100 at t'-1. The subconfiguration
100... (all O's to the left and don't cares to the
right) has unbounded propagation hence (e) is un-
bounded. If qq; = 11 at t', then q9;9,93 = 0101 at
L . = g .
t -land r:l.qlqzqsqhq5 011101 at t'-2, Thus, in
general, if at t', Qq; = 11 then 99795939),***9p, .19
941%n+p = 01111...1101 at t'=({n+l)/2), n odd, as

can be readily checked. (The other possible can-
didate at each step is 0010l...100- which does not
qualify since £(00=) # 1.) Thus qq, = 11 at t!

implies q; = 1 for all preceding times which con-
tradicts the assumption that q; =0at t =0,

Hence qql = 11 cannot occur at t', and it is suf-
ficient to check only q to determine if (e} is
unbounded or not.

Since £(100) = 0, the rightmost 1 of e is
erased (1+0) at the first step. In fact, at
least one such erasure occcurs at each succeeding
step. Hence, if q = 0 for K+2 time steps from
t = 0, then the initial configuration e has been
completely erased and (e) is k-bounded effectively
by K+l. Else, by the lemma, {e) is unbounded.

Self -Reproducing Machines

In the preceding sections only the computa-
tional abilities of cellular spaces have been in-
vestigated. It is of interest to study also the
®constructional® abilities--the construction of
one configuration by another. It is not at all
clear what "construction" should be defined to be,
but it is probably agreed that (non-trivial) self-
reproduction should be considered_an example of
construction. Moore's definitionll of "gelf-
reproduction® will be used, although, as he points
out, it does not exclude trivial self-reproduction,
That is, care will be exercised to insure the non-
triviality of any self-reproducing configuration
in this section.

In fact, a set of one-dimensional self-repro-
ducing Turing machine configurations will be exhibe=
ited in this section. Let c be one of these con-
figurations. Then ¢ self-reproduces in the
(Moore) sense that if ¢ is embedded in cellular
space Z at time T = O, then at some time T'>0
there will exist two disjoint copiles of ¢ in Z; at
T">T' there will exist three copies, etc. Fur-
thermore ¢ will be required to compute any given
“otat recursive function g.

The environment of. one self-reproducing con-
figuration in the set will be one of the type of
spaces introduced above, lLet Zy be such a space;
that is, the transition function and neighborhood
of each cell in Zy is such that M, an (m,n) Tur-
ing machine, can He 8imply embedded as im, say,
the proofs of Theorem 1 and Theorem L. It is said
then that M is wired in Zy or that Zy has M wired
in.

By the notation x-?ry'will be meant that Tur-
ing machine program P acting on initial tape x
halts with y on the tape as its final result.

Note that the following two extremes follow
from work relating Turing machines to computing
spaces: (1) the wired-in Turing machine "does
everything", or (2) the self-reproducing configura-
tion "does everything®,
Self-Reproduction: Extreme 1. The wired-in Tur-
ing machine M does everything.

Example 1: Trivial Self-Reproduction.
in machine M which duplicatés 1ts 1nput tape,

Wire

275

repositions its head, duplicates all tape to the
right of this position, etc. This can be repre=-
sented as follows?

—_— Lae

X T{"'(x.vx) —M"'(xsxlx) N

where the vertical arrow indicates the position of
the head after the computation indicated by the
horizontal arrow (i.e., x means the head is at the

laftmost symbol in the tape string x).

Note that any one-dimensional configuration
can be made to self-reproduce in Moore's sense in
this scheme. Just embed a ®head™ cell at the left
end of a given "tape™ configuration; program the
head cell to its initial state.

Example 2. Non-trivial Case.
sal Turing machine U! such that

Wire in univer=-

fI(P,x)-—a-?(fl(P’x) S¥s£1(P,x))_g-f .

where f' is the encoding of programs and tapes re-
quired by U' and x5 y. Note that P could be uni-
versal if desired.

By the notation h.s is meant that "tape" con-
figuration s has been augmented by a "head" cell in
state h in initial position (i.e., in a position
corresponding to the leftmost square of tape string
s8). Hence Examples 1 and 2 above can be summarized
as theorems.

Theorem 9. ILet S be the set of finite l-dimension-
al configurations on finite state set A. Then
there exists cellular space with (head) cell
state h in which h.s is a self-reproducing config-
uration for all seS. (That is, h.s is the initial
configuration and subconfiguration s self-repro=-
duces.)

Theorem 10,
a cellular space Z
figuration ¢ such H
similates P.

For any Turing machine P, there exists
1» (head) cell state h, and con-
hat h.c self-reproduces and

Corollary 10.1 There exist Zgi, h, and ¢ such that
he.¢ self-reproduces and is universal.

Self-Reproduction: Extreme 2. The self-reproduc-
ing configuration does everything. That is, for
simplieity of the embedding space, a solution is
desired so that the wired-in computer U does as
little as possible--i.e., nothing more is required
of U than it be universal (as opposed to U' in Theo-
rem 10 above, of which several other duties are

also required). In fact, since the simplest U does
Just the following:

£(P1,x ")y

where f is the encoding function required by U and
x'—ﬁqy', then a program P is desired such that

x—P-—(f(P,x),y,f(P,x))—P— ves

276

where y is the result of some computation on x
(e+gs, y might be a string of d background (blank)
symbols, b9, so that f(P,x) is "separated" from
the second f(P,x).

The feollowing theorem should be compared to
a similar result on self-describing machines ob=-
tained by Lee 2, In it we will use terminology
due to Michael Arbib: A bi-recursive function f
from set R to set S is such that given R wa can
effectively find f(R)€S and given seS we can ef=-
fectively tell whether or not it is of the form
f(R), and if so for which (unique) R.

Theorem 1ll. For an arbitrary bi-recursive func-
tion f from (program, tape) pairs to tapes and for
an arbitrary total recursive function g suen-that
g(x) = y, there exists a self-describing machine
with program P‘such that

p.<

T

Proof. Define the function h from programs to
programs such that h(Q) is the first program which
reads arbitrary input tape x, encodes program Q

and tape x by given function f to get £(Q,x), prints
£(Q,x), computes g(x) to get y; prints-y, prints
£(Q,x) again (either by re-encoding £(Q,x) or by
copying the result of the first encoding), and
finally moves the head to the-leftmost symbol in
the rightmost encoding f(Q,x). That is,

—g—(f(?,x),y,f(?,x))

x

I

Clearly h can be chosen total recursive. Thus, by
the recursion theorsm, there exists P which is a
computational fixed point of h such that

W(f(Q:x) ;Y:f(Q:x))

IX—P‘(f(P’x) sYsE(Pyx))

Remark 1. In partiecular, g(x) could be a universal
Turing machine function designed to be total by
defining it to leave an empty tape in case x is not
an encoded Turing machine and tape.

Remark 2. Clearly,-only slight modifications of
the proof above are required so that P satisfies

F—P-(f(l’,x),}’,f(P;x))T ess

That is, h(Q)--hence P--is chosen so that it ignores
all tape to the left of the head position when the
head is in its initial state, and the final state

of the h{Q) in the proof is identified with the
initial state.

Thus in cellular space Zyy with U wired in, the
following situation can hold:

f(P,x)—ﬁ-—(f(P,x),y,f(F,x))

at some time T >0 and

AT e

e s

.

f(P,x)—ﬁ-(f(P,x),y,f(P,x),y,f(P,x))

at some later time T1>-T and so forth. That is,
if the "tape"™ configuration.K for f(P,x) is embed-
ded in 2 and #*®head" cell is programmed in the
propar place into the configuration to form the
configuration h.K, where h is the head cell state
corresponding to the initial state of U, then
later (assuming P is a halting program) the tape
configuration for (£(P,x),y,f(P,x)) will exist in
ZU’ etce 4

Suppose g(x) = b“ = string of d background
symbols for all x. Then, in pictures,

heX: mCE] T=0
provides the following time sequence:
[K l-d=__K] Tl> 1y
] S e I | T,>Ty
LK] X 1] [K Jda={ K l%}%

Hence we have shown the following:

Theorem 12. Let ZU be a computation-universal cel-
Talar space with universal Turing machine U wired
in. Then there exists a configuration ¢ in ZU
which is self-reproducing and computes any given
4ebel recursive function g.

Remark. Theorem 12 gives a sufficient condition
for a space Z to support (Moore) self-reproductions
The condition is not that Z is computation-univer-
sal but that a universal Turing machine is wired in
(implies computation-universality). This is a con-
dition on Just one module and its template neigh-
bors and is therefore simple to apply.

Here is an interesting result:

Corcllary 12.1 There exists a 7-state, l-dimen-
sional self-reproducing universal Turing machine
configuration.

Proof. Embed the configuration h.K from the proof
of the theorem in the cellular space of Corollary
L.2. Choose g to be a universal Turing machine
function,.

Conclusions

Von Neumann exhibited a 29-state cellular
space capable of supporting self-reproduction and
computation-universality. His construction is very
lengthy and complex. Codd was able to reduce the
state count to 8 states per cell but his construc-
tion is also long and complicated. By greatly in-
creasing cell complexity, Arbib was able to de-
geribe the processes simply. Here we have demon=-
strated both simple spaces and simple descriptions
by deriving cellular spaces with low state count
{e.ge, 7 states per cell) and using recursive func-
tion theory for compact constructions in them.
Whereas all previocusly published work in this area
has been confined to two dimensions, the results
here are most elegant in one dimension although ap=

277

plicable to two or more dimensions. It 1s also
striking that nowhere have we had to define "con-
struction" in a cellular space to obtain self-
reproduction. In fact, computation-universality
has been shown sufficient. However, a complete
set of conditions insuring computation-universal-
ity has yet to be shown. Here we were able to
refute one conjectured sufficient condition and
of fer two necessary conditions. Of course, we
have not answered what is probably the most vexing
question: Have we actually constructed machines,
or are the procedures introduced here just fancy
copying routines somehow distinct from construc-
tion?

References
1. von Neumann, J.: The Theary of Self-Repro-

ducing Automata, edited by A.W.Burks, Univer=
sity of Illinois Press, Urbana and London {1966).

2. Thatcher, J.W.: "Universality in the wvon
Neumann Cellular Model", to appear in a book
edited by A.W.Burks on Cellular Automata.

3. Codd, E.F. "Propagation, Computation and
Construction in 2-dimensicnal Cellular Spac-
es", Technical Report, University of Michigan,
March 1965.

Le Arbib, M.A.: "Simple Self-Reproducing Univer-
sal Automata", Information and Control 9
(1966) 177-189.

5. Holland, J.H.: "Universal Embedding Spaces
for Automata", in Progress in Brain Research:
Volume 17; Cybernetics of the Nervous System,
{N. Wiener and J.P.Schadd, Eds.) Elsevier
Publishing Company, New York (1965).

6. Wagner, E.G.s "An Approach to Modular Com-
puters, I: Spider Automata and Embedded Auto-
mata", IBM Research Report RC-1107, January
28, 196L.

Te Smith, A.R., III: dissertation to be submitted
to Stanford University.

8. Minsky, M.L.: "Size and Structure of Univer=-
sal Turing Machines Using Tag Systems",
Recursive Function Theory, Symposia in Pure
Mathematics 5, Amer. Math. Soc. (1962),

9. Pattee,H.H.: "The Physical Bases of Coding
and Reliability in Biological Evolution", in
Towards a Theoretical Biology: I, Prolegom-
ena, (C.H.Waddington, Ed.) Edinburgh Univer-
sity Press (1968).

10, Arbib, M.A.: "“Self-Reproducing Automata-=-
Some Implications for Theoretical Biology",
in Towards a Theoretical Biology: II, Sketch-
EE,_(sea reference 9).

11. Moore, E.F.: "Machine Models of Self-Repro-
duction™, Proc. Symp. Appl. Math., XIV, 17-32,

12, Lee, C.Y.: "A Turing Machine Which Prints Its
Own Code Script", in Proc. Symp. Math. Theory
of Automata, 1963, 155-16L.

	SimpleCUCSandSelfReproduction-1

