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SHORT NOTES

A coding problem arising in the theory of iterative arrays
of finite-state machines (namely, given such an array, does
there exist an equivalent array of binary machines [1]) was
found to be closely related to the following problem stated
in the terminology of shift-register theory: Do there exist
“zero-free” shift-register sequences of arbitrary cycle lengths
L <r* for arbitrary r and k, where k is the number of stages
(degree) of a shift register and r is the number of states per
stage? A zero- free sequence does not contain the length-k
subsequence 0¢ where the r states per stage are given, with-
out loss of generality, the convenient names 0,1,2, - - -, r— 1.
The question has been answered affirmatively for the case
r=2 by Golomb [2, p. 192] and Yoeli [3]. We now proceed
to answer the generalized question affirmatively for almost
all lengths L. The qualifier “‘almost all”” will be made precise
in the theorems below and will be conjectured, in fact, to be
unnecessary.

Lemma 1: (Algorithm for a maximum-length shift-register
sequence.) A maximum-length (L=r") r-ary shift-register
sequence (SRS) of degree k is formed from the leftmost
digit of each k-digit number in the list constructed in ac-
cordance with steps 1 and 2. The leftmost digits are taken
in the order generated.

1) Begin a list of length-k strings (i.e., k-digit numbers in
positional notation) with the string 0*~!(r—1) as the “‘ini-
tial word.”

2) Each succeeding number in the list will have as its
first k—1 digits (its prefix) the last k—1 digits (the suffix)
of the preceding number. The kth digit is chosen to be the
largest integer (<r—1) such that the string so formed has
not previously appeared in the list.

Example 1: For r=k=23, the algorithm of Lemma 1 gen-
erates the following ordered table of length-3 strings.

1 002 10 211 19 200
2 022 11 112 20 001
3 222 12 121 21 011
4 221 13 210 22 111
5 212 14 102 23 110
6 122 15 020 24 101
7 220 16 201 25 010
8 202 17 012 26 100
9 021 18 120 27 000

Notice that the string formed from the leftmost digits of this
list is the maximum-length SRS 002221220211210201200
111010.

Proof: We review a proof adapted directly from [2,
p.133] for the convenience of the reader. By definition of the
algorithm, if a string of length k appears in the list, then it
appears only once. Let I, L, - - - I, =0 !(r—1) be the initial
word. Then we show by induction on m that b,, - - - b1, - - -
I, _ . is in the list for all choices of by, - - , b,,€{0, 1, - - -, r —1}.
For m=k, this says that all k-digit strings appear in the list.
If the suffix a, - - - @, of the last string in the list is 01,
then clearly the leftmost digits form a cycle of length r*.
First we show that a, - - - a,_ is indeed 0* 1.

Since a, - - - a;,_ 1s the suffix of the last string, it must be
the case that all r strings of the form a, ---a,_,x have
already been listed. This would mean that a, - - - a,_, oc-
curs as a suffix r+1 times in the list, which is impossible.
Hence one of the occurrences of the prefix a, -, a,_;
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must not be the suffix of the preceding string in the list,
which can only be the case in the initial word. Now we in-
duct on m.

Assume m= 1. By the argument just given, the last suffix
is I; -+ - I, and it occurs as a suffix r times in the list.
Since each occurrence is distinct, b,I; - - I, _; must appear
for each possible choice of b;.

Assume 1<m<k and that b, _, - - b [, - L _, . Isin
the list for every possible b,,_ - b;. If the rightmost j
digits of b, - -+ b I, - - - I, _,, equal the leftmost j digits of
the initial word for j>k —m and some choice of b,,_; - b;,
then by the inductive hypothesis b,, b I, - 1I,_,, is in
the list for each possible b,,. If j <k—m, then b,,_, ---b I, -~
L_,#I,---L_, Thatis, b, | ---b, I - I,_, is not the
prefix of the initial word. Hence every time it appears as a
prefix in the list, it must be the suffix of the preceding word.
But it must appear all » possible times since, by the inductive
hypothesis, it occurs followed by I, _,,,; =0. Q.E.D.

Consider a list A such as that generated in the algorithm
above. We shall call any list formed from successive elements
of 4 a sublist of A. If the last element of a sublist of 1 is also
the last element of 4, then the sublist is a terminal sublist of /.

Lemma 2: A number comprised of digits each of which
are equal to or less than r, — 1 cannot precede r,0*~ ! in the
list generated by the algorithm of Lemma 1 for r>r,,.

Proof': Let W,_, be a length-(k—h) r-ary word with
1<h<k. Then when W,_,0" appears in the list of the
Lemma 1 algorithm, the " possible numbers which end with
W, _, must already have occurred in the list. This is seen
readily by induction on k; it is true by construction for h=1.
Also by construction, the addition of W,_,,0""* to the
list implies the numbers W, _ . ,0"1, Wi_ 41,072, -,
Wi~ w+1y0"(r—1) have been included in the list previously.
But this implies in turn that the prefix W, _,,,0" has oc-
curred as a suffix all r possible times. By the inductive
hypothesis applicable here, this means that all »* possible
words ending with each ¥ W, _, . 1), 0<r'<r, have occurred
in the list, or the r"" ' possible words ending in W, _ 1,
have occurred.

In particular, W,0*~ ! =r,0*"! must succeed all the *~
possible numbers ending in r,. The construction process
then allows no introduction of digits larger than r,—1 to
succeeding numbers in the list. Q.E.D.

Corollary I: The list generated by the algorithm of
Lemma 1 for r=r, and k=k, is a terminal sublist of the
list generated by the same algorithm for any r>r, and k=k,,.

Proof: By Lemma 2, the number succeeding r,0* !
must be 0~ }(r,—1). But this is the initial word for the
algorithm with r=r. Q.ED.

Example 2: For r=2 and k=3, the algorithm of Lemma 1
generates the SRS 00111010 from the following ordered
table.

1

1 001 5 101
2 011 6 010
3 111 7 100
4 110 8 000

Notice that this list is a terminal sublist of the list generated
in Example 1.
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Lemma 3: There exist r-ary shift-register sequences of
degree k for all but n cycle lengths L, 1<L <r*, where
n=2"1_(k—1) if all the sequences are zero free, but
n=2"2_(k—1) in the general case. In particular, there
exist r-ary zero-free shift-register sequences for all cycle
lengths L such that 1 <L <r*—2*+2k—1.

Proof : The proof proceeds by construction. For L such
that 1 <L <k, the SRS is simply 0%~ !1. These are clearly
zero-free sequences. For all larger L <r*, consider the fol-
lowing procedure.

The first L digits of the length-r* sequence generated by
the algorithm of Lemma 1 form a length-L zero-free SRS
if the Lth digit is not 0. We need only check the k — 1 length-k
numbers “around the ends” of the length-L number so
formed, i.e., the numbers beginning with the (L —k+ 2)th,
(L—k+3)th, - - -, Lth digits, respectively. But by the con-
struction process, all these numbers end in zeros and hence
cannot have previously occurred in the list generated by
Lemma 1.

If the Lth digit is a zero and the (L — 1)th digit is not,
then the first L digits form a length-L SRS which is not
zero free.

If the Lth digit is a zero and so are the (L — 1)th, (L —2)th,
-+ (L—i)th digits, 1 <i<(k—2), then the first L digits do
not form a SRS because the string 0¥ occurs i+ 1 times.
In this case the following procedure yields a length-L zero-
free SRS for k<L <r*—2%4+2k—1. Append string 0¥~ 1/
(k—1 zeros followed by j ones) to the left of the length-L
number generated by Lemma 1 and delete from it the right-
most (k—1)+j digits, 1 <j<k. For at least one value of j,
the Lth digit of the length-L number so formed must be
other than 0 or 1. This is because, from Corollary 1, all
length-k binary strings must be concentrated in the final 2*
digits of the length-r* number generated by Lemma 1. It is
also Corollary 1 which ensures no ambiguity in the addition
of the binary string 0¥~ 1/,

The number of cases not covered by the algorithms above
are as follows. 1) In the zero-free case, the number n of
lengths L not covered by the above is the number of zeros
in the last r*—2%+2k—1 digits of the maximum-length
SRS, i.e., in the “binary section,” guaranteed by Lemma 2,
minus its leading k— 1 zeros. Thus n=2"1—(k—1). 2) In
the general case, n is as in 1 but reduced by the number »n’
of cases in which a 1 immediately precedes a O in the binary
section. It is simple to see that »’ is half the number of zeros,
ot ‘n'=2""2 "Thus here n=2""1 =282 _(k-1)=2¢"2
—(k—1). Q.E.D.

Corollary 2: There exist r-ary zero-free shift-register se-
quences of degree k for all cycle lengths L, 1 <L<r*, if
k<r+1.

" Proof: The corollary is true if L<r¥—2%+2k—1; so
assume L>r*—2¥42k—1. Mark off the left most L digits
of the maximum-length SRS generated by the algorithm of
Lemma 1, as in the proof of the theorem. The rightmost digit
must fall in the binary section minus its leading k— 1 zeros
and k ones. If the digit is a 1, then the theorem gives the de-
sired SRS ; hence assume the digit is a 0. The nearest 1 on its
right in the maximum-length SRS must be at most k—2
positions removed. That is, there exists immediately to the
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right of the length-L string already formed the string 0'l,
0<i<k—3. Append this string and delete the rightmost digit
of i+ 1 substrings of the form s*. 1 <s<r— 1. Clearly these
deletions do not alter the SRS property, and the string so
formed is the desired length-L SRS. We have assumed i+ 1
distinct substrings s* exist; hence k—2<r—1. Q.ED.

Notice that the technique employed in the proof of Corol-
lary 2 can be used to reduce n in Lemma 3. The number n
of lengths not covered now becomes, in the zero-free case,
the number of zeros separated from the next 1 on the right
by r—2 or more zeros. Thus n is the number of k-tuples
ending with 070"~ 1, 1 <j<k—r, less those beginning with
all zeros (which correspond to the leading zeros of the
binary section). This is given by

k=r=1

Y P k—r) e I=2 T~k ~7)

i=0

n =

where an extra one for the maximum-length sequence is
included in the summation. For the general case, n is re-
duced, as in the proof of Lemma 3, by the number n' of
places an excluded zero is preceded immediately by a 1.
Thus n' is the number of k-tuples ending with 100"~ (plus
one for the excluded subsequence 0%) or
k—r—2
n = 2l =2
=0
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Thus n=2*"""'—(k—r). This argument and the preceding
results can be summarized in the following statement.

Theorem: There exist r-ary shift-register sequences of
degree k for all cycle lengths L, 1 <L<r*—2*42k—1.
Furthermore, there exists such sequences for all but n
lengths where n=2*""—(k—r) in the zero-free case and
n=2*"r"1_(k—r) in the general case. (Take n=0 if the
value of its expression is negative.)

Example 3 : The algorithms of the theorem generate the

following SRS table (except for L =25 which is covered by

Corollary 2) for r=k=3.

L= L=14 00222122021121
2 01 15 001110022212202
3 001 16 0022212202112102
4 0022 17 00110022212202112
5 00222 18 002221220211210201
6 002221 19 0022212202112102012
7 0022212 20 00110022212202112102
8 00222122 21 001110022212202112102
9 001100222 22 0022212202112102012001
10 0022212202 23 00222122021121020120011
11 00222122021 24 002221220211210201200111
12 002221220211 25 0022212202112102012001101
13 0022212202112 26

00222122021121020120011101

All these numbers are zero free. Notice that case L=25 is
not covered by the theorem. A zero-free number has been
obtained however by simply eliminating the string 111 from
the list of strings generating the length-26 SRS.

Since the proofs above utilize only one of the many (see
[2]) algorithms for generating maximum-length SRSs, and
from experience with small r and small k£ (as in Example 3
above), the following is proposed.

Conjecture : There exist zero-free shift-register sequences
of degree k for lengths L, 1 <L <r* k>0.forall r,



SHORT NOTES

Notice that the number of lengths not covered by the
algorithms above is a function of both k and r. Hence the
smallest pair (r, k) not completely treated is (3, 5) for which
there are possibly 243 sequences of distinct lengths. Se-
quences for all 243 lengths exist if there is no zero-free re-
quirement. Sequences for all but two of the lengths exist in
the zero-free case, and one of these is, of course, the maxi-
mum-length sequence with L=243. The other must be of
length L>220.

Notice also that for k> 5, the binary section generated by
the Lemma 1 algorithm always begins 0¥~ *1%01%~20%1%~3
0101%~30°. Hence for k> 5 the bound on L for which zero-
free SRS sequences of the desired variety are guaranteed to
exist can be improved to L<r*—2%+5k—3. Thus, in the
(3, 5) example above, the sequence not covered must be of
length L.>233.
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