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Summary - A collection of n finite, identical automata are considered, where each
one, at each unit time step, takes a new state as a function of the state taken at
the preceding step by itself and by certain other automata in the collection, called
its neighbors, arbitrarily chosen, but limited in number. The neighborhood relation
is assumed symmetric. One is asked to determine for a given d, and independently

of n, the number of states and the state-transition function of an automaton of

the type which has the following property: All automata in the collection are put
in the resting state except for one of them, #, arbitrarily chosen, put into an
initial state distinct from the resting state; then at the end of a finite length

of time all automata in the collection depending, by the neighborhood relation,
directly or indirectly on A, are put simultaneously and for the first time into a
final state agreed upon in advance. It is said then that our arbitrarily numerous
automata are connected into an arbitrary network of automata of degree d, and that
those in the -component connected to & have been synchronized.

Our problem is a generalization of the "Firing Squad Synchronization Problem"
of John Myhill, which envisions n soldiers disposed along a line - that is to say,
with a neighbor on the right and a neighbor on the left - and gives the role of R
to a soldier at the end of the line, the general. For this problem R. M. Balzer has
published an 8-state solution with a minimum "tlme-to-flre , 2n-2. We show the
general problem also has a solution by proposing an (8 x5 )—state automaton with a
time-to-fire of Ln-6.

Our networks of automata constitute a generalization of the "Iterative Arrays

of Finite-State Machines" of von Neumann and Moore.

%*Translated by Alvy Ray Smith III, Department of Electrical Engineering, New York
University, Bronx;:New:York 10453, November 1971 (unauthorized).

tPublished in ICC Bulletin, 1966, Vol 5, pp. 245-261 (in French) , Copyright 1966,
Internat¢pnal Computatxon Centre.
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I. STATEMENT OF THE PROBLEM

By finite automaton A, it is understood here that given is a finite set E
called the set of states, a finite set V called the set of inputs, and a mapping
h S: ExV* E
It is said that A takes, for each time t€ N, its state e(t) from the set E,
and its input v(t) from the set V. At time t+l, its state is determined by the
equation:
e(t+l) = s(e(t),v(t)) teN,

We note that it is not possible for an automaton in the class so defined to count

arbitrarily high.

More precisely, it is understood here by automaton (E,d,S) of degree d, a finite

automaton A which takes its input from the set Ed. It is therefore defined by a

finite set E, an integer d, and a mapping S:

S: ExEd+-E.

The input to an automaton (E,d,S) of degree d is a d-tuple, each element of

which is a member of E. The set of indices of this d-tuple will be denoted by A:

A=1{1,2,...,4};

thus it will be called the set of "input addresses" for the automaton (E,d,S) of
degree 4.,
It is understood here by a graph G of degree at most 4 that given are an

integer d and a quadruple (X,U,I,T) defined in the following way:
Two finite sets X and U called respectively the set of nodes and the set of
edges of G, and two mappings

I: U=»X and T: U=X

called respectively "initial end" and "terminal end", satisfy these relations:
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I(u) # T(u) VYueU
and cardinality of w(x) <d VxeX

where w(x) designates the set of edges which have x as an end (initial or terminal).

We now define what is meant by network R of automata (E,d,S).

Assume a graph G of degree at most d: G = (x,U,1,T).

Assume an automaton of degree d: A = (E,d,S).

At each node i of G one "attaches” an automaton of type A, denoted Ai’ in the
following way: One maps injectively the set w(i) of edges of G with end i, into
the set of input addresses of Ai:

Vi €X, there is an injection: d’i :wl(i)=a

and requires that, upon calling e; the state of Ai and vi its d=-tuple of inputs:

k-th element of v. = e, if k = ¢i(u)
i i

e

and if j is the end of edge u other than

i

k-th element of v, Cifk Imdy
where 0 designates one of the elements of set E.

It follows then that at time t+1 automaton Ai situated on node i takes a state
as a function of the state at time t of itself and of its neighborsl in the graph.

Since G is an arbitrary graph of degree at most d, everything happens exactly
as if our automata had d terminals, each subject to being connected to a terminal
of another automaton, and as if they had randomly connected their terminals to read
from their neighbors their respective states, each having, voluntarily, let certain
terminals go unconnected and what we will call free.

The networks of automata constitute a generalization of the "Iterative Arrays

of Finite-State Machines" of von Neumann and Moore (See Cole [3]).

% The orientation of the edges of G might seem superfluous: It is effectively

arbitrary, and will serve only for the writing of graph words in paragraph III,



The problem we pose is the following:

A collection of arbitrary size n of automata (£,d4,8) forms an arbitrary network
of automata R of degree d. Other than the neutral state 0, three elements of E
are specified: state D (dormant), state M (march!), state F (fire).

It is required to determine E and S in such a way that, if A is an arbitrarily

chosen automaton in the collection and if:

at time 1: ei(l) =Mif A = A, and ei(l) =D if A # A

then there exists a finite integer © such that:

at time O: ei(e} = F for each automaton Ai of just that component

connected to A in R,

and such that:

for all times t€6: ei(t) # F, for i = 1,2,...,n.

We say then that in time © our automata have been synchronized.

Clearly it is a matter of defining E and S as & function of d only, that is
to say, independently of n and also independently of the graph G associated with R.

Our result is that there exists an automaton (E,d,S8) - that is, a finite
automaton - which solves this problem.

This problem has been posed and solved for the case where d = 2 under the
name of the "Firing Squad Synchronization Problem".

Since the automaton (E,d,S), which solves the general problem, has among its
components the automata (E,2,5) which solve the particular problem (4 = 2), we
devote our paragraph II to the "Firing Squad Synchronization Problem", essentially

to facilitate the reading of the sequel.



II. ON THE "FIRING SQUAD SYNCHRONIZATION PROBLEM"

The problem entitled the "Firing Squad Synchronization Problem" defined in
1957 by J. Myhill, first solved by J. McCarthy and M. Minsky and E. Goto [4], is
treated in the literature by E. F. Moore [5], A. Waksman [10], and R. M. Balzer [1].

Statement. Assume a line of n similar automata Ai of degree 2, subscripts

from 1 to n, are connected in line in the order of the indicesl. Ai is defined by:
a finite set E = {0,M,D,F,...} from which it takes its state ei(t) at time t,
a function S: ExE2¢E
the relation for state transition:

ei(t+l) = S(ei(t)’ei~l(t)’ei+l(t)) for t>1 and i = 1,2,...,.n

for which one assumes for convenience: eo{t) = en+l(t) = 0 for teN.

It is required to define E and S in such a way that, if
at time 1: el(l) = M, e2(l) = e3(1) = .. = en(l) =D

there exists a finite time 6 so that

at time 0: el(e) eg(e) = gus T en(ﬁ) = F, and so that

for all times t <8: ei(t) FF, for i = 1,2,....0.

1 In the literature on the subject one speaks of n soldiers in line, of which one,

situated at the end of the line, is the general; he gives the signel to fire,

messages are exchanged from neighbor to neighbor and suddenly, all together, for
the first time the soldiers fire. Our generalization could be called the

"geattered Firing Squad Synchronization Problem'.



A Simple Solution

We propose & simple solution of this problem. The set of states of the auto-

maton solution will be denoted:
. > 4 > P> < o
5= {Dp.m,iM%%1,2,3153,"F,0}
say, 14 symbols to which ws have given a mnemonic form:

dormant state

= o
i

march! state

= active boundary state

= dead boundary state

= fast signal sent from left to right

= slow signal of age 1 starting from the left

= slow signal of age 3 starting from the right

= final state (Fire)

state of the free input element of Al and of An

O = whdod ROR

We define the function 5. The essential idea is the following: If the left-

most automaton in the line, (M), emits on one hand a fast signal (R) which at each

time step progresses through an automaton and rebounds from the end of the line,
and on the other hand at the following time step, becomes (M), emits a slow signal
(i,g,g) which progresses three times less rapidly, these two signals will cross
in the middle of the line and will determine one or two middle automata which will
be put into the march! state (f1); these in turn become the head automata of two
equal lines of automata, one helf as long as the first considered. After a certain
number of successive divisions, each automaton exists in state M, M, or %, and it
is the first time that at least three successive letters M appear: The final state
F is then adopted by each at the same time.

Represented in Figure 1 gre the histories of the "Firing Squads" of n soldiers
for n = 1,2,...,8.



The function S is entirely described if we give for each of the thirteen states

e, distinet from O, the list of the x, which solve the equation:
S{x) = e, with ecE and e # 0.

Each solution x will be denoted by a word of three letters

€1.1%: %+

indicating the state of three successive automata Ai-lAiAi+l at time t; e is then
the state of automaton Ai at time t+l; it is for an obvious simplification of ex-
pression that we have inverted the first two elements of the triple x.

Hierarchical table of the solutions of the equation S(x) = e.

Directions for use

(1) (.) designates as not important that element of E
(2) & designates each state which is written with the letter e not over-
lined or where the overlining is not important
(3) =x is a triple solution of S{x) = e., if one does not have 8(x) = °
for p<r.
r e - 2
1 F MMM oMM M MO0
e m 3.8 ®.3 2. ®E. .3% .R%E nm.nm
3 M .M.
L M . DO 0D. . M. . M,
5 R R.. MR. #..
6 & ..®R L.REum ..m®
7 1 ®.. 3..
8 I ..H . B
9 2 .1.
10 ¥ .1.
n 3 .2.
12 5 .%.
i3 D ...



Known results on the "Firing Squad Synchronization Problem"

The solution of the "Firing Squad Synchronization Problem" which we proceed to
sketch is an automaton of 13 states (there is no reason for counting the symbol O).
As for the time-to-fire, 6(n), the time at the end of which the n automata of the
line prove to be synchronized, that is to say, in state F, it is for this solution
less than 3n, and more precisely such that 6(n)/3n tends toward 1 as n increases.

E. F. Moore showed in first publishing this problem that, whatever solution
(E,2,8) is given, 2n-2 constitutes a lower limit for 6(n); E. Goto has effectively
exhibited a solution (E,2,S) for which the size of E is large but the time-to-fire
is equal to 2n-2. A. Waksman [10] nas produced recently a solution of 16 states
for which the time-to-fire is equal to the minimum time 2n-2. Finally, even more
recently R. M. Balzer [1] has produced a solution of 8 states for which the time-
to-fire is also minimum.

In the sequel we will denote by q the minimum number of states - a number
actually unknown - of the solutions (E,2,S) for the "Firing Squad Synchronization
Problem" for which the time-to-fire is 2n-2.



TII. THE TREEWORDS OF A CONNECTED GRAPH

As we have stated, we are going to reduce in a certain way the general problem
of a network of automata R (& arbitrary) to the special case of a line of automata
(d = 2) studied in paragraph II.

One tempting way at first sight would be to class the automata of the component
connected to & in B in successive levels 0,1,2,...,%,... according to their shortest
distance 2 (in number of edges) to £, A& forms by itself level O. This numbering
can be made by the automata themselves, level by level commencing with B; and as
Moore [6] has remarked, one can restrict himself to a numbering modulo 3, so that
thanks to only 3 states each automaton knows of its neighbors, those belonging to
the same level, to the preceding level and to the succeeding level. Can one then
treat the ordered levels of automata like a line of automata? In fact not, because
in general there will exist automata without neighbors in the succeeding level and
which, without knowing it, do not exist in the highest numbered level.

This first envisioned way, although particularly elegant, leads to a solution
only for special networks, such as the hypercube and the regular polyhedron, where
each node has an opposite pole. For some such networks, which will not be charac-
terized here, an obvious solution with only g+3 states realizes the synchronization
in a time of only 2d-2, if 4 is the diameter of the graph. We remerk that d is
less than the number of automata n.

For the most general case of a network K of degree d, we have resorted to

another method of alignment: the treewords of a connected graph.

Definition of treewords

Assume a graph G, that is to say two sets and two functions:

x-—-'{Al,A ,...,An} I:U->X
U= {ul,ue,...,um} T: U+ X

with I(u) # T(u)
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These will be called:

the quadruplet (X,U,I,T) : graph G

the elements of X ¢ the nodes of G

the elements of U ¢ he edges of G

the image I(u} : the initial end of u
the image T(u) : the terminal end of u

The functions I and T define for each edge of G, on the one hand two end nodes,
and on the other hand an orientation (chosen arbitrarily in what follows). One

calls a word on G of p letters, each word

g = liﬁe...ﬂ,p

o - ‘q ~ = 2 - Ld = P
written in the alphabet A {ul,ul,uz,ug,...,um,um} and which is such that

d(Zi) g(®, . .) for i = 1,2,...,p-1

i+l
where d(2) = T(u) ifl=u
I(u) if e =1
and g(&) = I(u) ifl=1u
T(u) if 2 = 4,

da(%) and g(f) are read respectively "right end of 4" and "left end of e, T
The set of words on grapn G is denoted by L.
The functions d and g from A into X are extended to the non-empty set of words

on G by teking:
g(o) = g(2,)) and  alo) = alr ).

G is said to be connected if and only if:

¥x,yeX, with x # y, ®eL: x = g(o) and d{0) = y.

1'[From droite and gauche, respectively. A.R.S.]
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The symbol £ will denote the letter 0 if £ = u, and the letter u if £ = 4; and‘it
will be said that % and & correspond to the same edge u and are conjugates.

In our graph G, it is assumed that at each node x, the edges u with end x, that
~ is to say for which I(u) = x or T(u) = x, are totally ordered. This local order
permits us to speak of the "first edge'' of x if it has at least one, and in that
case of the "first letter' & for which g(2) = x.

We have associated with each letter zl in the alphabet A a word 0(21), which

will be ¢elled the treeword gg.zl. The treeword of 21 denoted:

G} = Lilowsuls b oul

172 i-171 h

is defined by the following program:

(a) 21 is its first letter.

() for i = 2,3,...,h
21 is the ''first letter' such that g(xi) = d(zi_l)
and d(zi) # g(zj] for j<i.

(c¢) if (b) is not valid 2, = 2, where ¢ designates the rightmost letter
for which the conjugate letter £ is not yet written,

{(d) if (c) is not valid the writing of o(zl) is terminated.

(e) 0(21) has the maximum number of letters allowed by (b) and (c).

The definition itself of the treeword 0(21) affirms its existence, its finiteness,
its uniqueness and the evenness of h.

The essential property of the word 0{21) is that each of its letters Ei can be
"written' by the automaton placed at the node x = g(zi) in the graph G, which has
retained in memory only the letters of 0(21) having x for right or left end. This
automaton has no need of knowing all the parts of 0(21) already written; in order to
apply (c) for example, it does not read the word already written backwards, but
keeps in its memory only the last letter g written having end x, and for which the
conjugate % has not been written.

It can be shown that the treeword 0(21) has the following additional properties:

(1) h =2n-2 if G is connected and has n nodes.

(2) glo(2y)) = d(a(2)) = g(2)).
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(3) if & is writ.en in -{%;), 2 and % are written there one time exactly.
(4) vxeX, Hli in 0(21): d(Zi) = X, 1f G is connected.

We reference G. Tarr [8][9], Trewaux, and P. R, [7].
If G 45 nc” connected propertics 1 and 4 are clearly valid for the component

connectec to %15 that is to say for the maxima®! connected subgraph of G for which

21 is one letter.

Property 4 for words 0(21) assures us that that unique word, written starting

from 11, activates all the nodes of the component connected to %.; in addition

1
0(21) has the virtue of being a word of minimum length with this property.

In the case of the graph with 4 nodes in Figure (2), and for g, = a, we have

1
for 5(21) the following word of 6 letters:

c(a) = accbba
In summary, we proceed to define for each graph G an injection
o: A>L

which will be called the '"treeword function' of G, associated with a local order
of edges at each node of G.

In a connected network of automata, the word o(gl) will correspond to a
"Firing Squad" in line, where a given automaton Ai might appear several times;

each automaton will appear there in any case at least once.

Realization of treewords by

P

a network gﬁ_automata.

We now specify the operations executed by an automaton Ai = (E,d,M) which
"attached’ to node i of graph G, calls off the letters 2 of 0(21) with left end i.
A treeword, if we recall its characteristic properties, is defined completely
by its local properties. The word 0(21) can therefore be realized in pieces by the
automata Ai‘ The local ordering of the edges at i is by convention that which
leads, thanks to the injection $;, to the ordering A, the set of input addresses
of Ai'
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By the right {resp. left} edee of a letter % of G is meant the input address
associated with the right (resp. left) end of 2.
We show that the contribution on the part of automaton Ai to the word o(kl)
amounts, for each time t, to a function
m, ()1 A{0,X,%,%,.}

that is to say a word of d letters written with the following symbols:

0: free input address for Ai (not the end of an edge)

e
os

input address of Ai’ the right edge of the first letter ¢ with right end i
written in 0(21) at time t, but only in the case where 2 is not yet written
in the part of 0(21) written by time t
*: input address of Ai’ formerly marked X, the right edge and left edge of

two conjugate letters which appear in the part of 0(21) already written

by time t
+: input of Ai’ which is not in the category X and which is the left edge

of a letter which appears in the part of 0(21) already written by time t
.: input of Ai’ the left edge of a letter which does not appear in the part of

0(21) already written by time t

The word mi(t) is sufficiently specified to define all sequences of two letters

sz such that i = d(zn) = g{& ..}, for the following reasons:

p+l p+i

2p+1 is deduced from zp by instructions (b) and (c) of the program for treewords
after zp+1 the next letter of o(ﬁl) of right end i, if there is one, is

necessarily zp+1.

For example, if the 9 input addresses of Ai {case d = 2) are at time t in the

state:

COo0++X .00 .
123456788
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and if one denotes by 3,4,5,6,9 the letters of G which have for right edge the input
addresses of Ai of the same name, we affirm, in the part of c(zl) written by time t,

the existence of the configuration:
5-3" L] QSZO ® .460 L] .6§0.09§

).

and: that there does not appear another sequence QPQP*l such that i = d(zp) = g(2p+1
The word m, (t) is by definition a word of d letters written in the alphabet ‘

{0,X,*,+,.}, subject to the following rules:

X and * appear at most one time and not together.

+ carnot precede ..

This word is the state of Ai = (E,d,M), the automaton charged with the realization
of 0(21).

Let k(d) denote the number of words of this variety, that is, the size of E,
Clearly k(d)<5d.

The next-state function M indicates:

either the absence of transitiom
or the replacement of the first letter . by the letter +

or the replacement of the letter X by the letter *,

The replacements correspond to the writing of Qp+l in 0(21), then that of zp is

signaled by a neighbor of Ai in G. Thus the automaton Ai’ situated higher, passes

successively through the following six distinct states:

6bo....00. (state of rest)
00+ .X.00.

00++X.00.

00++X+00.

00++X+00+

004+ +*%+00+ (final state)

123456782?
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An automaton A chosen arbitrarily calls off, for the name of 21, the first letter of
the word 0(21), its first input address which is not free., A is the only one to
never use either X or *. When A& replaces the last letter of its word~state by the
letter +, it calls off the last letier of 0(21).

In conclusion Sd states suffic2 for the automata (E,d,M) to be capable, we
recall, when they are connected in networks of degree d, of realizing a treeword of
the network upon starting with an arbitrary one among them. This operation requires,
for a connc:ted networl: of n automata, a time 2n-2, siice the treeword has then 2n-2

letters.
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IV. CONSTRUCTION OF THE AUTOMATON (E,d,S) SOLUTION TO THE GENERAL PROBLEM POSED

Assume a connected network K of n identical automata (E,d,S), Al’AZ""’An'

To the edge u of the graph G associated with B correspond two conjugate letters
% and L of the alphabet K of G. One of the two letters, & for example, has for left
end the node i of G, and for right end the node j of G, We say then that the letter
£ has for left edge (i,k), that is to say, the input address k of Ai’ and for vight
edge {i,r), that is to say, the input address r of Aj.

We construct (E,d,S) in the following way:

(1) To each of the input addresses of (E,d,S) is associated an automaton (E,2,S)
with q states, defined in paragraph II.

(2) The initial excitation of A = Ab consists of putting the automaton (E,2,S)
of the first input address (p,k) of A, the end of one edge of G, in state
M. The letter of G having for left edge (p,k) is designa:ed by 21, for
0(21) the treeword of G associated with Lye

(3) Each letter Qi of 6(21) is represented by its left edge, c(ll) is there-
fore, by virtue of (1) and (3), a line of 2n-2 automata (E,2,S).

(4) 1In (E,d,S) there is an automaton component of the type (Z,d,M) defined in
paragraph III. This automaton is charged with the realization of 0(21),
that is, with the putting into line the 2n-2 automata of type (E,2,S).

(5) (E,d,S) is said to be at rest if its d components (E,2,5) and its component
(E,d,ﬁ) are at rest. (E,d,8) is said to be in state F if at least one

of its components (%,2,5) is in state F.

The automaton (E,d,S) so constructed is a solution to the problem posed because
all the automata Ai of the connected network R have at least one component (E,2,8) in
0(21); whenever the (E,2,5) of 0(21) are synchronized, all the Ai's are synchronized.
It goes without saying that if R is not comnected, only the automata of the component
connected to A are synchronized,

Numbér_gg states. (E,d,S) has d components with q states and a (d+1)-th com-

ponent with k{d) states, which grants it in all quk(d) states. The number of states

of (E,d,S) is therefore bounded from above by the number desd.
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Time-to-fire., The time-to-fire for n automata arbitrarily connected in a con-

nected network is given bv:
6(n) = 2{2n~-2)=2 = 4n-6,

In effect the realization of the word o(zi) and the sending of the first signal down
t" line of automata constituted by 0(21) are done simultaneously,

Figure (2) shows a network of &4 automata of degree 3 for which the components
(E,2,8) are of the type described in paragraph II, and the history of their being
put into synchrony in 10 units of time,

Conclusion. The placing into synchrony of n automata of arbitrary degree, on
the initiative of an arbitrary one among them, needs, if the automata are arbitrarily
connected, no more time than twice the time required for firing the "Firing Squad”
of n soldiers on the initiative of a scldier at the end of the line. It requires
on the contrary less time for one very special class of connection schemes, which
allows the definition of ordered lavers of automata (see the beginning of paragraph
III); in this special case only, the time-to-fire is a function of d, which we
notice is decreasing.

For the general case of arbitrarily connectable automata, the number of states,
independent of n, is by contrast an exponeniial function in d. One should see this
growth of the number of states as the price paid for the freedom permitted cach in
the way of being connected to the others by its d connections. We notice also that
no automaton of the network has a privileged structure; each automaton, when given
the chance, can become the general. The essential point is that there not exist
two distinct initiatives of this kind.

The nature of the graph formed by arbitrary connections, and in particular the
number of edges, plays no role in the calculation, since the automata cooperate in
remembering only one tree of this graph. The automata once synchronized can forget
everything in their enviromment which is external to the tree.

Once synchronized, our automata can also reject the clock which tells them
their time, that is to say synchronizes their transitions. It suffices in effect to
agree that the components (E,d,¥) continuously circulate a mark on the cyclic word
0(21) without ceasing, so that each round of this circulation counts as one unit of
time. That which will then be called the synchronization of the transitions of the
automata is the fact that an automaton will never have two transitions in advance of

another. Our synchronized automata themselves constitute a clock.
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n=2,3...,8,



10

iy 49 g By

123 123 123 123

0.0 c + .. s s %
DDD DDD HDD DD D

0.0 +X . + .. L s

DDD RMD  HDD DDD

0X0 + X PR A

DRD Tup MDD DDD

0*0 HEF  F . L . d

> T

DDD 3ME MDD DDD N <%ﬁ~— .
0#*0 + X+ + .. ..x 3 J&\
DDD 3MD MDD DDR 2K3;§/ﬂb
0% 0 + %+ + .. . i"*vi,—’lAz
pIp oDpMD MDD DDR c|

0*Q + * 4 + . . . ®
pZp DME MDD DDD 2

0 %0 + % 4 + .. P *"’/A
p%D DMNH MDD DDD 1
0%0Q + % 4 + . . e o %
DD MMM MDD DD

0*0Q + * 4 + e ;o &

FFF FFF FFF FPF

Figure 2. Network of four automata A,,A,,A,,A, of degree 3
and the history of their being synchronized in 10
time steps when A, is excited. The automata com-
ponents (E,2,S) ugilized are of the type described
in paragraph II.



