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Summary

A set of equivalences is established among
cellular automata, iterative acceptors, and
linear-bounded automata. However, cellular auto-
mata are shown to be inherently faster than iter-
ative acceptors. Many positive results are pre-
sented to indicate that the context-free languages
can, perhaps, be accepted in time n and space n
by cellular automata.

Introduction

A cellular sutomaton! is an array of identi-
cal finite-state Moore machines which are uniform-
ly interconnected. It is autonomous but for a
spatial pattern of inputs at time t = 0. The
temporal sequence of "configurations" of states of
the array generated autonomously after t = 0 is,
in general, the object of interest. Each config-
uration in the sequence is the image of a function
of the preceding configuration, with only a single
such function associated with each cellular auto-
maton. Thus cellular automata are a subclass of
the so-called tessellation automata®? which allow a
set of such functions.

A closely related class of devices 8hall here
be called iterative automata.’ An iterative auto-
maton is also a uniform array of identical machines
but is not autonomous, receiving a temporal input
pattern at one specially designated input-output
machine. The temporal sequence of outputs gener-
ated by this one machine is the object of interest.
Thus, in a sense, iterative automata are to cellu-
lar automata what an on-line Turing machine is to
an off-line Turing machine.

A cellular automaton is intuitively a pattern-
receiving "retina", especially in the two-dimen-
sional case. Hence the pattern recognition capa-
bilities of cellular automata is particularly in-
teresting. Initial work" on this problem has shown
that these devices can recognize a wide variety of
topological invariants, including connectivity, in
linear time (time proportional to the perimeter
of the given pattern). This paper represents an
extension of this work obtained by restricting the

classes of patterns studied to those called formal
languages.

Definitions

The abbreviation n-D is used to mean n-dimen-
sional, for n a positive integer. We shall usually
consider the 1-D case except where otherwise
indicated.

One may envision a 1-D cellular space, or
cellular automaton, as an infinite strip of film,
each frame of which represents a copy of a single
finite-state machine. Each machine, or cell, op-
erates in synchrony with all others in a given cel-
lular space, and time is assumed to proceed in dis-
crete time steps. Associated with each cell is a
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local transition function § which obtains the next
state of the cell as a function not only of the
present state of the cell but also as a function
of the present states of a specified set of neigh-
boring cells, or neighbors, in its neighborhood.
It canbe shown' that a 3-cell neighborhood--e cell
and its left and right neighbors--always suffices
in the 1-D case; hence we assume this neighborhoag

If Q is the state set of each cell, then the
input set is QxQ. That is, the output of a cell
is taken to be its state, and this output is used
as input to the two nearest neighbors. Hence
§:0%Q: (x,y,z)?y' is the local transition func-
tion for a cell in state y with left neighbor in
state x and right neighbor in state z. Note that
a global transition function A can be defined as
the simultaneous invocation of & at each cell.
Thus A maps a configuration--i.e., an assignment
of states to each cell in a cellular space--into
another configuration. There is a special state
q €Q, called the guiescent state, such that
. %? o’qo) %"

We shall frequently restrict our study to
"bounded" cellular spaces. Thus, although a cellu-
lar space is infinite in extent, we can force it
to act finitely by setting two cells initially to
a special boundary state b. Then § is restricted
in such a way that no information can flow through
the cells in state b and so that the cells in
state b never change from that state. Hence the
finite portion of the cellular space between the
two boundary cells acts as a finite cellular space.

But if we desire to process a larger pattern--i.e.

the finite portion of a configuration between the
two boundary cells--then we simply set the boundary
cells farther apart. The following definitions are
intended to capture these ideas.

Definition 1. A deterministic bounded cellular
space (DBCS) is a 1-D cellular space-—denoted by
the L-tuple (X,Q,b)—with the 3-cell nearest-
neighbor neighborhood, state set Q, and determin-
istic local transition function §: @3+Q restricted
as follows:

(1) beQ is a special boundary state;

(2) %= q_ = Q-{vb} is the initial alphabet;

(3) 8(q;,b,q,) = b for arbitrary q;,4,6Q;

(4) two and only two cells, the boundary cells,

are in state b at time t = O.

Definition 2. The pattern transition function for

a DBCS Z = (X,Q, 6 ,b) is the function F: * such
that F(q,q, q_ﬂﬁ = G(b,q }6(q 9,095 }...
8lay_ 2"1;: 129, qn—l’q'n “d F%M- he

empty string, where n is the number of cells in 2
between the boundary cells.

+In fact, for an unbounded 1-D cellular space, &
2-cell neighborhood is always sufficient.
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Definition 3. An element of Qg is said to be a

& =
_'Ea‘l'.tez:u.5 for DEBE-7 = (X,Q,5,b). Let R: Q¥%+Q be
the extraction function which extracts the right-
most element of a finite pattern: R(q.q....q )
= q end R(A) = b. 132"

We shall be interested in bounded cellular
spaces as language acceptors in the following
senge:

Definition L. A DBCS Z = (X,Q,8,b) is said to
accept the language LCX* (on A) if, for arbitrary
xel, there is a time t such that R(F'(x))eA where
AcQ is a set of accept states disjoint from X. We
shall denote a DBCS used in this manner by the 5-
tuple (X,Q,6,b,A) and call it a DBCS mceptor. %
is said to recognize L if it accepts L on A. and
accepts L' = X*-L on A, where AL NA_ = ¢ an&

AlU C:Q: If Z recognizes L, w§ say Z rejects L'.
Such & Z is called a DBCS recognizer.

A language accepting device is said to
accept (recognize) a language L within time T(n)if,
for any x of length n, it can determine whether br
not) xeL within T(n) steps, where T: N+N is a total
time function on the positive integers. T(n) = n
is called real time; T(n) = cn, ¢ a constant, is
called linear time.

Definition 5. L is a DBCS language if there is a
DBCS acceptor Z = (x,q9,6,b,A) such that L = L(Z)=
{xex*| (3t)[R(F"(x))eal}. Similarly, L is a DBCS
predicate if it is recognized by some DBCS recog-
nizer. A real-time DBCS language (predicate) is a
DBCS language (predicate) which is accepted (receg-
nized) within T(n) = n. Similarly, the adjective
linear-time implies T(n) = cn.

Thus a string is accepted if, when embedded
between two boundary cells in some DBCS acceptor,
action of the pattern transition function causes
the rightmost cell to eventually pass into an ac-
cept state.

The concepts above are readily generalized to
the nondeterministic case in the obvious way: A
nondeterministic bounded dlular space is defined
just as is a DBCS with the exception that §: Q3+2
is a nondeterministic local transition function
with the restriction that &(q,,b,q,) = {b}, for
arbitrary q.,q.€Q. A languagé is Jaccepted in this
case if at éomé time t it is possible for the right-
most pattern cell to enter an accept state.

Q

An n-D iterative automaton is an n-D cellular
automaton with a distinguished cell which has a
local transition funetion augmented to be a func-
tion of an external input also. A string is said
to be accepted by an iterative automaton if the
distinguished cell ultimately goes into an accept
state and emits a corresponding output. An iter-
ative automaton used in this accepting mode is
called an iterative acceptor. A real-time iter-
ative acceptor accepts within time T(n) = n. A
real-space iterative acceptor uses no other cells
than does a real-time iterative acceptor. That is,
for the 1-D case, only the distinguished cell, the
n cells immediately to its right, and the n cells
immediately to its left can ever change state,

217

Hence a real-time iterative acceptor is a special
case of a real-space iterative acceptor. An iter-
ative acceptor is nondeterministic (deterministic)
if its local transition function, including that
of the distinguished cell, is nondeterministic
(deterministic)--just as for cellular automats,.

A third class of machines with which we shall
be concerned are the linear-bounded automata. We
assume the reader is familiar with these devices,
especially as defined in [5] Two classes of machines
are said to be equivalent if they accept the same
class of languages.

For symbol conventions, a brief review of the
familiar context-free languages follows: A conted-
free grammar G is a 4-tuple (V,,V.,S,P) with finite
non-terminal alphabet V., finite germinal alphabet
V., disjoint from V, ,SEVN the starting symbol, and
P"a finite get of productions of the form o+, whee
for V=1 Vp,0eV and BeV¥. For w ,v eV* and pro-
ducﬁn:aﬂg we write w aw.=> w.fw. and Take =>¥% to
be the transitive clo%urg of =5 | The language
LG) generated by G is given by L(G) = {W|S=>*WEV§}
and is called a context-free language., A linear
context-free language is generated by a linear
context-free grammar--i.e., a context-free grammar
for which every production is of the form Y+a, ¥ig
or YraX for aeV, and X,YeV, . A general knowledge
of context-free language tgeory and terminoleogy is
assumed--see, for example, Hoperoft and Ullman,!?
for further details.

We shall make use of the following easily
proved theorem [L4] (see also [2] and [3]):

The Speed-Up Theorem (for DBCS). Let k be an ar-
bitrary positive integer. For an arbitrary DBCS
acceptor Z = (X,Q,8,b,A) with |Q|= r, there exisgs
a DBCS acceptor Z' = (X,Q',8',b,A) with [Q'|= 8r
such that if Z accepts within time T(n) then z'
accepts within time (T(n)/k)+n.

In particular, if Z accepts L within linear time
T(n) = cn, then there is & %' which accepts L
within T(n) = (1+e)n,e>o0.

Equivalence and Complexity Results

Theorem 1. The class of n-D nondeterministic
zdeterministic) bounded cellular spaces is equi-
valent to the class of n-D nondeterministic
(deterministic) linear-bounded automata.

Proof. The proof is straightforward, except for
one small subtlety in the nondeterministic case,
but tedious. Hence only a sketeh of the proof
technique is presented with emphasis on this sub-
tlety. Furthermore, only the 1-D case will be con-
sidered, the generalization to the n-D case being
straightforward. See[lL] for a proof of this theysm
for the 2-D deterministic case.

First, let L be the language accepted by linear-
bounded automaton M. Then construct bounded cellu-
lar space acceptor Z such that L = L(Z) as follows.
Let each cell of Z simulate one square of the tape
of M. Thus the boundary cells in Z simulate the
endmarkers on the tape of M. Let each cell of Z
also be capable of simulating the state behavior
of M but not the actual moves, of course. Thus




only one cell at a time will ever be simulating M.
A move of M is simulated by one cell's ceasing to
simula&g M while one of its neighbors commences
the simulatior.

The simulation is effected by giving each
state of a cell C in Z two coordinates, say (a,B).
Here o will represent the state of M if C is simu-
lating M else it will be some special state - (hy-
phen) when C is not simulating M. The other coor—
dinate B will represent one tape symbol of M. It
represents the scanned symbol only if o # - .

Let any cell with o # - be called the head
cell. Thus our simulation will ensure that only
one cell at any one time is the head cell., Notice
that, in the nondeterministic case, the head cell
and its two nearest neighbors are all possible
candidates for position of head cell after a one
step simulation of M. To ensure that only one of
the three will become head cell, we break the si-
mulation of one step of M into two steps of Z.
During the first step, Z will nondeterministically
simulate the nondeterministic behavior of M. During
the second step, Z will deterministically simulate
the move of M. Clearly, in the deterministic case,
cne step of Z suffices to simulate one step of M.
The interested reader can readily fill in the re-
maining details.

Conversely, let L' be the language accepted
by a bounded cellular space Z'. Then construet a
linear-bounded automaton M' such that L' is the
language accepted by M' as follows. In contrast
to the simulation above which is real-time (or
twice real-time), this simulation will require n
steps for each step of Z' for n the length of the
input pattern.

The input to Z' is recorded on the tape of M'
one state symbol per tape square. Then M' makes
one complete pass along its tape for each step of
Z',"dancing" sbout each square to obtain neighbor-
hood information for updating that square before
proceeding to the next square. Again we leave the
details to the interested reader, there being no
difficulty involved in this case in the general-
ization to the nondeterministic mode.

Hence pattern recognition by cellular arrays
reduces to problems in the theory of context-sen-
sitive languages. The same is true, in a sense
which is made precise below, for iterative accept-
ors. The proofs below assume the 1-D case, the
n-D generalizations being straightforward.

Lemma 2, The class of languages accepted by n-D
nondeterministic (deterministic) bounded cellular
spaces is accepted by nondeterministic (determin-

istic) n-D real-space iterative acceptors.

Proof. A bounded cellular space can be simulatede—-
in its language accepting mode--by an iterative
acceptor as follows: An initial string for the
cellular space is input temporally into the distin-
guished cell of the simulating iterative acceptor,
leftmost symbol first. Each symbol is shifted left
until the entire input string is arrayed spatially
in the cells of the iterative acceptor. A signal
initiated by the final input symbol must be pro-
pagated left to halt the shifting of the string to
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the left. This entire input operation can be ac-—
complished in time 2n for a string of length n.
Then a firing squad® is simulated. When it "fires",
the cells of the iterative acceptor simultaneously
begin functioning exactly like the cells of the
simulated cellular space. If the string is accep-
ted by the cellular space, then the rightmost cell
accepts. But by the input procedure, this cell is
the distinguished cell of the iterative acceptor.

Lemma 3. For an arbitrary n-D nondeterministic
deterministic) iterative automaton, there exists
an n-D nondeterministic (deterministic) cellular
space which simulates it in real time.

Proof. The input string to the simulated iteratie:
automatm is embedded one symbol per cell in the
simulating cellular space. The first temporal in-
put symbol is assumed to be the rightmost symbol

in the spatial array of the input. The two cells
at either end are placed in "endmarker" states.

The right endmarker state also serves to designate
one cell in the cellular space as the simulated
distinguished cell of the iterative automaton.

Then the input string is shifted one symbol at =
time into the right endmarker cell. Besides being
capable of this shifting operation, each cell is
also able to simulate a cell in the simulated iter-
ative automaton. That is, the states of each cell
can be considered to consist of three "channels",
the first for shifting the input string, the scond
for simulating the iterative automaton, and the
third for holding the output string as it is shift-
ed out of the cell simulating the distinguished cell.

Theorem 4. The class of n-D nondeterministic (de-
terministic) bounded cellular spaces is equivalent
to the class of n-D nondeterministic (deterministic)
real-space iterative acceptors.

Proof. We need only prove the converse of Lemma 25
but only slight modification of the proof of Lemma
3 is required for this goal. Clearly, Lemma 3 is
true for iterative acceptors as a special case of
iterative automata. Specifically, the left and
right endmarker cells in the proof become the
boundary cells. The simulating cellular space is
supplied with three channels. Cne is used for
shifting the input into the right-boundary cell,
the second simulates the n cells to the left of
the distinguished cell, and the third simulates the
n cells to the right of the distinguished cell.

Corollary 4,1. If an arbitrary n-D deterministic
iterative acceptor acceptslanguage L within time
T(n), then there is an n-D DBCS which accepts L

within time T(n),

Corollary 4.2. The context-sensitive (determin-
istic context-sensitive) languages are precisely
the languages accepted by nondeterministie
(deterministic) bounded cellular spaces and real-
space iterative acceptors.

Corollary 4.3. Any context-free langusge is accep-
ted by some 2-D DBCS within time T(n) = (1+e)n,e>Q




T

Proof, Kosaraju’ proves that a 2-D deterministic
itera¥ive accaptor exists for each context_free
language, which accepts within time T{n) = 6n and
hence within time T(n) = (1+e)n by the speed-up
theorem for iterative acceptors.?® (The straight—
forward adaptation of the Kosaraju proof to DBCS
drops the time requirement from T(n) = 6én to T(n)
= 3n/2, but this is still, unfortunately, greater
than real time.)

The next theorem makes explicit the difference
in computing power between cellular spaces and it—
erative acceptors. It says that the converse of
Corollary 4.1 is false. But first we need s lemms,

A palindrome in X* is a word of the form wwR,

where weX* and is the string w written in
reverse order.

Lemma 5. L, = {wRIwex*} is a real-time DBCS lan-
guage; so is L2 = LlX* and L3 = X*Ll.

Proof. Consider the space-time diagram of Fig. 1.
This is a convenient heuristic device for designing
a DBCS (e.g., see [6,10]) in the sense that once
one can draw a satisfactory diagram, he can imple-
ment it by an appropriate loecal transition function.
This implementation is a tedious task which we smll
typically leave to the reader.

Each cell sends its state to the left and rigit
at unit speed (one cell per step). The center cell
of the array is determined by the "collision" of
the two "boundary pulses" sent by the boundary celk.
Each cell acts as if it were the center cell (the
right cell of the two center cells) of a palindrome;
Should two pulses carrying different states ever
collide at the cell in position i then that cell
goes into a special state, say 0, signifying that
position i cannot be the center cell of a palindrome,
and it remains in that state. The pulse sent left
by the right boundary cell acts as a "collection"
pulse, which "reflects" from the center cell of the
pattern to the right boundary. Suppose we require
that this pulse send an accept state to the right
if and only if it finds a non-0 center cell at the
center of the given pattern. Then we have designel
Z. such that L. = L(Z ) is accepted within real
t% . But suppose we require the collection pulse
to send an accept state to the right if and only if
it finds at least one non-0 cell before, or as, it
collides with the center cell of the pattern. Then
we have designed real-time acceptor Z._ such that
L, = L(Z,). If the collection pulse Rere instead
the othef boundary pulse, and if it acted just as
does the collection pulse of Z,, then we have des-

igned 22, the real-time a.cceptgr of I‘a'

Theorem 6. There exists a (context-free) language,
not accepted within real time by any deterministic
iterative acceptor, which is & real-time DBCS lan-
guage. (Hence deterministic bounded cellular auto-
mata are inherently faster than deterministic real-
time iterative acceptors.)

Proof. Consider the language X*L. of Lemma 5. Cole®
haes shown that no deterministic r%al-time iterative
acceptor of any dimension can accept X*Ll.

This result suggests the following interesting,
and as yet unsolved, problem: Are the context-free
languages a subset of the real-time DBCS languages?
The remainder of this paper is devoted to partial
solution of this problem. For example, the next
theorem answers the question in the affirmative for
linear context-free languages. The proof is based
on the Kasami adaptation® of the Younger algorithm]
reviewed below:

Consider a linear context-free grammar G with
a.eV_,l<i<n, and X,YeV,_ ., If Y =*a_,...a s1<i<y<n,
thenTthere is an X such that X =ﬁ‘a;...aj_ and
Y+Xa, is a production or X =>*a.i+ ...aj én% Y+aix
is alproduction, Define N(i,i)={A|Aevy ana AvaeF),
1<i<n. Define N(i,J) = W (i,j)U Ne(ifj) where

N (i,3) = {¥|¥+%a eP, Xem%i,j-l)} and N,(1,])

= {¥|Y+a XeP,XeN(i+1,j)}. Then a,8,...8 €L(G) if
and only if SeN(1l,n).

Theorem T. Any linear context-free language is a
real-time DBCS language.

Proof. Let G = (V_,,V.,5,P) be a linear context-fres
grammar with V = VNU ? . Then design DBCS acceptor
Z = (V,,2,8,b) suc that 2 accepts L(G) in real
time by the following scheme: At time t = 0 a can-
didate a 321..a eV¥ is embedded one symbol per cell
between %he boundary cells of Z. At t = 1 the i-th
cell (i.e., the cell initially holding a,) computes
N(i,i). At t = k the i-th cell computes N(i-k+1,i)
if k<ij; if k>i, the cell maintains the state it was
in at t = k-1,

We must show that it is possible for the i-th
«lin Z to calculate N(i-k+l,)att=k<i. At t=k-1,
this cell computes N(i-k+2,i),adits left neighbor
computes N(i-k+l,i-1). But by the algorithm above,
this is sufficient information for computation of
N(i-k+1,i) at t = k if the i-th cell also contains
in its memory a, and the finite set P, two pieces
of information Basily provided.

Thus at time t = n, the rightmost non-boundary
cell computes N(1l,n) and accepts or rejects.

Corollary T.l. Any linear context-free language
can be accepted in real time by a DBCS with only a
two=-cell neighborhood, consisting of a cell and one
of its nearest neighbors.

Corollary T.2. Any linear context-free language
can be accepted in T(n) = (1+€)n,e>0, by a 1-D
deterministic real-space iterative acceptor.

Theorem 8. The class of real-time DBCS languages
is closed under intersection and complementation,
hence under union and set difference,

Proof. Let L, and L_, real-time DBCS languages on
alphabet X, be accep%ed in real time by DBCS Z7 and
22 respectively. Design DBCS Z to accept Llﬂ in
real time as follows: Each state of a cell in Z is
an ordered pair. The first element of the pair
gimulates Z.3; the second simulates Z_,. The pessage
of real time is determined by propasgiting a "elock"
pulse fram the left boundary cell to the right
boundary cell at unit speed. If and only if both
elements of the state pair of the rightmost non-
boundary cell are simulating accept states when the
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clock pulse arrives, then 2 accepts. (Once an el-
ement of the state pair of the rightmost cell goes
into a simulat@&accept state, it is assumed to
remain in that state.)

Design DBCS Z' to accept the complement LI of
L. in real time as follows: Each cell of ' simu-
1ates a cell of Z. Meanwhile a clock pulse is
propagated from left to right to determine real
time. If and only if the rightmost non-boundary
cell is not simulating an accept state of Z when
the clock pulse arrives at it, then Z' accepts.

$$e rest of the theorem follows from LlU L,
= t 1y - = n ]
(Ll L2) and Ly-L, = Ly L.
Corollary 8.1. A real-time DBCS language is a
real-time DBCS predicate.

The class of linear-time DBCS predicates is
also closed under the same operations." The next
theorem states that the class of linear-time DBCS
languages is closed under reversal. That is, if
I is a linear-time DBCS language, then so is It =
{xR|xeL}. One proof is simple: If Z accepts L,
then build 7' as the "mirror image" of Z. Then
the leftmost non-boundary cell of Z' simulates the
rightmost non-boundary cell of 7. When this cell
in 7' simulates an accept state, a pulse is prop-
agated right at unit speed to put the rightmost
non-boundary cell of Z' into an accept state.

Another proof is given below to illugtrate a
use of the following lemma, the first of three
DBCS "transformation" lemmas. In these results,
an entire pattern is the desired output, not Jjust
the state of one cell. (See[l] for a proof that
multiplication of two binary integers of total .
length n can be accomplished by a DBCS within time
n/2.)

Lemma 9. There is a DBCS which, given initial
pattern x of leng&% n, can_reverse X in linear
time. In fact, F° (x) = x".

Proof. Consider Fig. 2: The leftmost non-boundsxry
cell sends a pulse containing its initial state to
the right at unit speed. The rightmost boundary
cell sends a pulse one cell left at the first step;
it begins to propagate left at unit speed only when
the pulse from the leftmost non-boundary cell
"eollides" with it. Meanwhile every other cell in
the array sends a pulse containing its initial
state to the left at 1/2 unit speed. Each of these
pulses is "reflected" by the left boundary but at
unit speed. The cell where a reflected pulse col-
lides with the left-propagating boundary pulse
maintains the state carried by the reflected pulse
from the time of collision on. The collision of
the right boundary pulse with the left boundery is
the "computation complete" signal.

Theorem 10, The class of linear-time DBCS languegs
is closed under reversal.

Proof. If 7 accepts L, then design Z' to accept
IR as follows: Z' reverses an input, as in Lemma 9,
in linear time. The computation complete signal is
used to initiate a firing squad. When 1t fires,
in linear time, then Z' begins to simulate Z.
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The next lemma guarantees taat we can shift a
block of code of length m exactly m positions to
the right in linear time.

Lemma 11. Let X'y = Qyap- - be a pattern of
length n>2m with a speciagfy designated marker
state. Then there is a DBCS Z = (xaq,a,b},with
q;€X, 1<i<n, such that POR@y) = wx v,uedf.

Proof. Consider Fig. 3. The leftmost non-boundary
cell sends a pulse containing its state q, to the
right at unit speed. At the first step, %he marker
cell (in state g ) sends a right boundary pulse
one cell to the right. This cell remains in the
right boundary state until the pulse sent from the
left collides with it, at which time it sends the
right boundary pulse to ‘the right at 1/2 unit speed
and meintains state g, from then on. Meanwhile,
each cell initially in state gq,, 2<i<m, hes gent a
"q, pulse" containing its state . to the left at
unit speed. (To ensure that all and only these
cells act in this menner, a firing squad on the
leftmost m pattern cells, using the marker state
as an initiator (the "general"), can be used,)
These pulses, which are reflected by the left boud
ary at unit speed, propagate until colliding with
the right boundary pulse. The cell at which the
collision for the g, pulse occurs maintains state
qj from the time of collision on. The computation
complete signal is given by the collision of the %?
pulse and the right boundary pulse. Time require
is 3m.

Lemma 12. Let p and q be any two positive integers.
Then there is & DBCS Z which places a special marker
state #* at the k-th cell, K B

yws bR of an input
of length n within n time steps--1.e., there exists
t<n such that Ft(qlqe...qi_lqiqi+l...qn) =

. ¥
(qlqz...qi__f!qéqi_'_l...qn) for i =l—%+%.

Proof. The left boundary cell sends a pulse L
right at 1/p unit speed. The right boundary cell
sends a pulse R left at 1/q unit speed. Let x be
the position at which the two pulses collide: L
requires px steps to reach x; R requires (n—x)q
steps. But these times must be equal; hence

px = (n-x)q and the lemma.

Lemma 13. L) = {ww|xex*} is a real-time DBCS
language.

Proof. Cole® has demonstrated a 1-D iterative
acceptor which accepts L)4 in real time, The lemma
follows fram Corollary L.1.

Lemma 1b. L5 = {a™"c®|m>1} is a real-time DBCS
language.
Proof. Consider Fig. 4. To erase confusion, let

B be the boundary state in this case. At the first
step, each ab boundary, be boundary , Ba boundary,
end cB boundary is specially marked. Each ab
boundary sends a pulse to the right at 1/2 unit
speed checking for all b's. Each be boundary sends

FT=] is the integer just larger then or equal to x.




& pulse left at unit speed checking for all b's.
The Ba boundary sends a pulse right at unit speed
checising for,all a's. Should it collide with & be
boundary pulse at an ab boundary, then form Ba'p'
is guaranteed. The cB boundary sends a pulse left
at 1/2 unit speed checking for all e's. Should it
collide with Sn ab boundary pulse at a be boundary,
then form bdcYB is guaranteed. Furthermore, shoild
it also collide with the Ba boundary pulse, which
has determined the existence of form Balbi, at the
same bc boundary then form Ba™bMelB is guaranteed
and an accept pulse is sent right.

Lemma 15. L. = {a"|n is prime} is a real-time
DBCS language.

Proof. Let s SpeeeSien. be the characteristic
sequence of tﬁe primeés--i.e., s, =11fdi is prime
and s, = 0 otherwise. Fischer® 'has shown that this
sequenice can be generated in real time by a 1-D
deterministic iterative automaton, say M. Design
Z to accept L. as follows: Let Z simulate M, as
in Corollary é.l, with the rightmost non-boundary
cell simulating the distinguished cell of M, Si-
multaneocusly, have the left boundary cell send a
pulse to the right at unit speed checking for all
a's. If the simulBted distinguished cell of M gen-
erates a 1 Just as the b pulse arrives from the
¥'t, then Z accepts.

Theorem 16. There exist real-time DBCS languages
which are not context-free. (Hence the inter-
section of the real-time DBCS languages and the
context-free languages is a proper and non-empty
subset of the former.)

Proof. L., L., and L3 of Lemma 5 are context-free,
but L, of Lemia 13, L; of Lemma 1k, and L6 of
Lemma 15 are not contéxt-free.

Theorem 17. A Dyck langusge is a real-time DBCS
language. ;

Proof. Let D be the Dyck language on alphabet X
={a,,8,5...,8_,b ,b2,...,bm}. That is, if eacha,,
1<i<m, is one type of left parenthesis and if eagh
b—}_1<j<m, is the type of right parenthesis corre-
sﬂond?ﬁg to ajy, then D is the set of all well-fomed
strings of parentheses in X. Consder Fig. 5 in
order to design DBCS Z to accept D in real time.
Each cell in Z is given two channels--i.e., each
state is an ordered pair. Each left (right) pamn-
thesis a, (4} is propsgated to the right (left)
at unit Speed via the left (right) channel. Shoud
a left channel ever contain an a, while the corre-
sponding right channel contains a bj with i=j,

then the left and right parentheses“"cancel out".

The boundary cells also propagate the boundary
state b right and left at unit speed. Should a
left channel ever contain b while the corresponding
right channel contains a bj, then the right paren-
thesis has not been cancelied by a left parenthesis
and never will be. Hence a reject signal is crestsl
which propagates right. Similarly, should a right
channel contain b while the corresponding left
channel contains ana,, then a reject signal is
created and propagatéd right. Should two boundary
states collide without having previously createda
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reject signal, then an accept state is propagated
right at unit speed.

Since any regular language is linear context-
free, Theorems T, 8, and 17 ensure that the inter-
section of any Dyck language and any regular lan-
guage 1s a real-time DBCS language. Any context-
free language is the homomorphic image of some
such intersection but this approach to the proof
that context-free languages are real-time DBCS lan-
guages has not yet borne fruit. So far we have
only the following pieces of information to add to
those already generated, none of which cast out the
possibility.

Theorem 18. There exist inherently ambigucus
context-free langusges which are real-time DBCS
languages. Hence there exist nondeterministic
context-free languages which are real-time DBCS
languages.

Proof: Ii= {albjck|i=J or j=k} is an inherently
ambiguous context-free language. L is also a real-
time DBCS language as we show by constructing real-
time DBCS acceptor Z such that L = L(Z). Consider
Fig. 6 which illustrates a DBCS Z. for accepting
{&1b3ck|j=k}. To avoid confusion ~let B be the
boundary state here. The Ba, &b, be, and cB bound-
aries are specially marked, The cB boundary sends
a pulse left at unit speed checking for all c's’
Each ab boundary sends a pulse right at unit speed
checking for all b's. Should an ab boundary pulse
collide with the ¢B boundary pulse at a be boundary ,
having seen only b's and c's respectively, then fwm
bJcdB is guaranteed. The ab boundary pulse carries
this information to the rightmost non-boundary cell.
Meanwhile, each cell initially in state & sends a
pulse right at unit speed. The collision of the

ab boundary pulse with the rightmost non-boundary
cell causes that cell to begin checking for the
arrivals of only a pulses until the left boundary
pulse arrives. Should this condition occur then

Zl accepts.

We construct Z, to accept {albjck[i=J} by a
simple modification of the DBCS illustrated in Fig.
4. Eliminate the ab boundary pulse traveling right
at 1/2 unit speed and the cB boundary pulse trav—
eling left at 1/2 unit speed. Once the Ba and be
pulses collide at an ab boundary, having encountered
only a's and b's respectively, the Ba pulse contin-
ues right checking for all b's, a collision with a
be boundary, and finally all c's until collision
with the right bounfary. Should this condition
occur, then Z2 accepts.,

Use Theorem 8 to construet Z such that L(Z)
= L(Zl)UL(Zg).

Theorem 19. There exist context-free languages not
recognizable by any multitape Turing machine in
real time which are real-time DBCS languages.

Proof. Hertmanis and Stearns!! have shown that the
language L = {yxsy'xR|xe{0,1}* and y,y'e{A} U
{0,1,s}#{s} cannot be recognized by a multitape
Turing machine in real time. We now illustrate a
DBCS Z which accepts L in real time. Consider Fig.
T




Each cell sends a "g, pulse" containing its
initial state Ei right and left at unit speed.
Shoulgltwo 8 pulses collide at cell C, then C be-
gins to act as if it were the center cell ofa pal-
indrome as in the proof of Lemma 5. Should an s
pulse propagate to or through C, then C ceases to
check for palindromes. Should an s pulse (or b
pulse) collide with the right b pulse at cell C
while C is checking for palindromes, then the b
pulse checks for a non-0 at C (i.e, for existence
o & palindrome). One such non-0 before or at the
collision of the left and right b pulses is suffi-
cient for propagation of an accept state to the
right.

Another posgibility which must be accounted
for is an input of form xsxR. Have each s cell
also act as a center cell of & palindrome. Should
an s pulse ever propagate to or through such a cell,
then it ceases checking for ralindromes. However,
should an s pulse (or b pulse) and the right b
pulse ever collide at such a cell while it is
checking for palindromes, then the b pulse checks
for a non-0 just as above,

Discussion and Open Problems

We have approached pattern recognition with
cellular sutomats via formal language theory by
proving that any pattern set accepted by a cellular
automaton must be a context-sensitive language. A
special interest in time and memory requirements
led us to introduce and study the real-time DBCS
languages, those languages accepted in real time
by deterministic cellular asutcmata which are bound
tc use only "real memory"--i.e., only the memory
of those cells to which an input is presented.
Below is a list of several interesting but as yet
unsolved problems.

(1) Are the context-free languages a subset
of the real-time DBCS languages?

We have shown only partial answers to this ques-
tion. For example, the linear context-free lan-
guages are real-time DBCS languages,

(2) Are the real-time DBCS languages closed
under concatenation and reversal?

The answer to the general question is probably No.
(It is for real-time iterative acceptor languages.’)
The real-time DBCS languages have been shown clee=d
under union, intersection, complementation, and
set difference.

(3) Do there exist non-linear DBCS predicates
--i.e., DBCS languages which require non-lineear
recognition times?

It seems that the answer to this very interesting
problem should be Yes (as it is for iterstive
acceptors’) but attempts to use the diagonalization
proof technique of, say Hartmanis and Stearns,11
have all failed so far. The major difficulty
appears to be the real memory requirement. Thisg
is essentially the problem first posed by Beyer."
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