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Abstract

A formal study of pattern recognition capabil-
ities of cellular automata is underteken based on a
class of recently introduced grammars for two dimensicns,
the array grammars, which can be thought of as the two-
dimensional generalization of context-sensitive gram-
mars. The class of languages (patterns) generated by
array grammars is shown ta be precisely the class of
languages accepted by cellular automata forming rock-
connected finite subsets of the plane. Thus the usual
generalization to rectangular array-bounded cellular
automata is a special case of this class of machines.
The concept of perimeter time is introduced as a nat-
ural measure of computing speeds for two-dimensional
cellular spaces, and connectedness and convexity are
related to this measure. The class of patterns with
positive Euler number is shown to be linear-time recog-
nizable by rectangular array-bounded cellular automata,
thus solving an open problem of Beyer.

Introduction

This paper represents an extension of the study’
of one-dimensional (1-D) bounded cellular automata to
the two-dimensional (2-D) case. A 2-D bounded cellular
automaton--i.e., a finite array of identical finite-
state machines called cells, each connected to its four
nearest neighbors (except possibly at the boundaries)--
is intuitively a highly parallel pattern recognition
device resembling the retina. A powerful tool for in-
vestigating the pattern recognition capabilities of 1-D
cellular automata is formal language theory, but until
recently no such tool was available for the 2-D case
except in rudimentary exercises.” Milgram and Rosenfdd
have successfully provided a foothold by introducing
array gremmars and array automata. Their results are
used here to investigate 2-D bounded cellular automata.

Definition. An srray grammar is a 5-tuple G=(V,Vy,P.f,
S), where V is the vocabulary consisting of a finite
set of symbols, VoCV is the set of terminals, #eV-Vp
is the blank symbol, SeV-Vp is the start symbol, and P
is a finite set of structure-preserving productions of
form o+ defined as follows:

Let J be a finite connected subset of I%, for
I the set of integers. Then a and B are maeppings from
J into V with the restriction that if a(i,j) = aeVp then
8(i,3) = a (i.e., terminals are never rewritten).

An arrsy A is & mapping from 12 into V. A
production a*f is applicable to A if there is a trans-—
lation T of the domain J of & such that A[TJ=a. Array
A' is directly derivable from A, written A=>A', if for
o8 epplicable to 4, A'[1J=B and A'|(I%-tJ)=a|(1*-1J).
Let =% be the transitive closure of = . Then for
A "B, B is said to be derivable from A.

An initial array A5 is a mapping from 1% onto
{#,5} such that {&,J ﬂASEi,J) = s} is a singleton--ie.,
an initial array is all blanks but for ome S. A termi-
nel array Ap is @ mepping from 12 into VpU {#} such that

+Throughout this paper, connected will mean rock-con-
nected——i.e., points (i,J]) and (i',J") are connected
if and only if |&i'| + [3-3'|<1. A subset K of I? is

onnected if and only if, for two points and
$aR. there is a sequencé of E%Egts p,?pz,...ppn in’x
with pi1=p, pp=a., and p connected to Pyyyo 1< 2p?

{(1,3)|Aap(i,3)ev} is connected. The arr lan e
generated by an Errny grammar G is L(G)={B|A="B, where
A is initial and B is terminall. It can be, shown that
domains {(0,0)}, {(0,0),(0,1)}, and {(0,0),(0}-1)} suf-
fice for the productions of the class of array grammars.
That is, for any array grammar G there is another gram-
mar G' whose productions use only these three domains
and such that L(G) = L(G').

Finally, an array grammar G is sald to be
monotonic if it cannot erase--i.e., if for arbitrary
production a+8, a(i,J) ¥ #, then B(i,)) ¥ #. In this
case, L(G) is called & monotonic array language.

Informally, a Turing array acceptor is a
Turing machine (nondeterministic, in general) on a 2-D
tape which can move one square up, down, right, or left
(u,d,r,l, respectively) at each step, and can read or
write a symbol on any scanned square. An initial tape
is assumed to have only & finite set of nonblank squares,
and the acceptor is initially scanning one of these.
Furthermore, the set of nonblank squares is assumed to
be connected. The machine is called an array-bounded
automaton (ABA) if it bounces off blanks—i.e., should
it move in direction X from a nonblank symbol to &
blank symbol at time t, then it moves in direction R°
at time t+1 without having altered thetlank., Turing
arrey acceptors (hence ABA) accept by final state.

Theorem (Milgram-Rosenféd). The class of languages
accepted by array-bounded automata is precisely the
class of langusges generated by monotonic array grammars.

A 2-D cellular automaton (or, equivalently,
cellular space) is en infinite array of finite-state
machines (FSM), called cells, where each cell is assig-
ned a point in I2. 1In general, & cell is nondetermin-
ijstic. The local transition function § of a cellular
space obtains the next state of a cell as a function of
not only the present state of the cell itself but the
present states of the four nearest neighbors of the cdl,
which form its neighborhood. This neighborhood is
sometimes called the von Neumann, or Hj,neighborhood,
where ;§b= {(1,1)e1?| |i+)|<x} defines a general class

of neighborhoods. Similarly, define Jx = {(1,))eI?|
|i|<k,[J|<k}. A common element of this latter class of
neighborhoods is J1, the so-called Moore neighborhood,
consisting of a cell and its eight nearest diagonal and
orthogonal neighbors. It can be shown" that there is
no loss of generality in assuming the H; neighborhood.
Since the J; neighborhood is sometimes more convenient,
the following lemma is occasionally invoked in the seqwel

Lemma 1.* For an arbitrary cellular space Z with a Ji
neighborhood, there is a cellular space Z' with an H;
neighborhood which simulates 2 in two times real time-—-
i.e., two steps of Z' simulate one step of Z.

A confi tion in a cellular space Z is &

mapping from I into the state set @ of each cell in Z.
Define the global transition function F of Z to be the
simultanecus invocation of § at each cell in the space.
Then F maps configurations into configurations. There
is a special state go in Q, called the guiescent state,
which has the following property: If a cell and all its
neighbors are in go(are guiescent) at time t, then that
cell must remain in go at time t+l. The support of a
configuration ¢ is given by sup(e)={(1,3)Tc(i,3)#a0}.
An initial configuration (i.e., at time zero) is assumel
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to have finite support.

Definition. A (2-D) array-bounded cellular space (BCS)
is a cellular space for which each cell has a specially
designated te B,.called the boundary state, and a
local transition function restricted to map a cell in
state B into state B in all cases. Furthermore, no
boundary states can be created after time zero. The
boundary cells (cells in state B)T at time zero in a
BCS are assumed to delineate a connected subset of celk,
called a retina of the BCS. A simply-connected BCS
(SBCS) is & BCS for which each retina is simply—connec-—
ted. A rectangular BCS (RBCS) is an SECS for which each
retina is restricted to form a rectangle., The rightmest
cell in the uppermost row of a retina in a BCS 7 is
called the accept cell for that retina in 7. Notice
that, since no boundary cells can be created after t=0,
& given retina in Z remains fixed in Z for a1l >0,
Hence we shall call the accept cell of a retina in %
the accept cell of Z.

A BCS Z with retina R is a pattern recognition
device in the following sense: Let Xc Q-{B} be the ini-
tial alphabet of Z. Let X* be the set of all connected
words on alphabet X, where a connected word is a

mapping from a finite, possibly empty, connec-
ted subset of I? into X. Assume that R is initially
programmed with elements from X. Thus for initial con-
figuration co, co(R) = wex®. The word (cf. pattern) w
is said to be accepted by 2 (92 A) if there is & time t
such that [Ft(cg ,JR)rWA#¢, where A cq-{B} is dis-
Joint from X and (i_, i) is the accept cell of Z. &

¥ . R» % . :

langusge L CX" is accepted by Z (on A) if, for arbi-
trary wel, w is accepted by Z on A. A language [, cX
is a BCS language if there is a BCS with initial alpha-
bet X which accepts precisely L. Similarly, a language
L is recognized by a BCS Z if it is not only accepted
by % but its complement L'=X*-I, is rejected by Z--i.e.,
L' is accepted on A', where A'MNA = $. A BCS predicate
is a language L for which there is a BCS which recog-
nizes L. The prefix D shall be used to denote the de-
terministic special case in acronyms as, for example,
DBCS.

The speed of recognition of patterns by BCS
shall be a major concern. For RBCS, a natural measure
on the retinas is m+n, where m and n are the dimensions
of & retina. Hence linear time will imply a number of
time steps proportional to m+n, and area time is a num-
ber of time steps proportional to mn for RBCS and to
the number of points in the retina for arbitrary BCS.

A time measure of particular interest here will be
called perimeter time--i.e., & number of time steps pro-
portional to the perimeter+% of a given retina, At best,
perimeter time is linear time. At worst, perimeter time
is area time. Note that for RBCS, perimeter time is
linear time. External perimeter time is a number of
time steps proportional to only the external perimeter
of a retina (i.e.,additions to the perimeter due to
holes in the retina are not included).

BCS Languages and Predicates

The purpose of this section is to show that the
BCS languages are precisely the languages generated by
monotenic array grammars. An ABA (DABA) with word wex®
on its initial tape can simulate a BCS (DBCS) with ini-
tial retina configuration w by raster scanning the squae
on its tape, "dancing" about each square to gather reigh-
borhcod information, and updating each square just as

+In general, if & cell in a BCS is in state geQ, it
‘shall be called a g-cell.

would the BCS. The simulation is straightforward ex-
cept for the necessity of skirting the holes in the
array, but this can be accomplished by using the bound-
ary of a hole as a pushdown stack to record net up and
down moves.® Thus one step of the simulated BCS requir-
e€s area time for simulation by the simulating ABA.

Conversely, it is straightforward to simulate
an ABA (DABA) by a BCS (DBCS) in at most two times real
time (i.e., two steps of the BCS simulate each step of
the ABA).! An ABA accepts by final state whereas a
BCS accepts by the state of a prespecified cell, the
accept cell. Milgram and Rosenfeld have presented a
methed whereby an ABA on an arbitrary square of the
array on its tape can find its way to = prespecified
square of the array, say, the rightmost square in the
topmost row, in perimeter time squared--i.e., in kp?
time steps, where p is the perimeter of the nenblank
portion of the array and k is a constant. A simple
consequence is that if an ABA accepts = language L with-
in time T, then there is a BCS which accepts L within
time 2T + kp?. The next theorem brings the time limit
down to 2T + kp. This is accomplished by showing, in
a lemma below, that the parallelism of a BCS can be ex—
ploited to speed-up the finding of the accept cell from
an arbitrary cell in the retina,

The proof of this lemma is quite lengthy but
is interesting in that it makes extensive use of the
1-D firing squad result (see Waksman®) and of the 1-D
Dyck language recognizing BCS of Smith.! Both of these
results are intrinsically cellular automata theoretic,
and hence take on the appearance, at least, of basic
theorems for cellular automata theory.

Lemma 2. Given a DBCS Z, there is a special cell in
each retina R of Z which can be uniquely identified
within perimeter time., That is, for c¢ an initial con-
figuration in Z entirely quiescent on R which has perim-
eter p, there is a special state $ and a special cell
(ig»Jg)€R, the accept cell, and a time t = kp, k con
stant, such that [Ft(coJI(iR,jR) = $ and such that
[Ft'(co)](1,5)#$ for all t' if (1,3)#(ig,dg) or for all
t'<t if (i,) = (ig.Jg).

Proof. The technique is sketched in steps:

T (1) All upper right cells (i.e., those having
north and east neighbors in boundary state B) of R iden-
tify themselves by entering, say, state A. This requires
one time gtep.

(2) A11 boundary-layer cells (i.e., those cells,
which are not B-cells, having a B-cell in their J1
neighborhood) identify themselves. This requires, by
Lemma 1, at most two time steps, the first of which
occurs during execution of step (1).

(3) Each A-cell sends a pulse along the boundary
layer in which it lies (and which was marked in step
(2)) in the clockwise (cw) direction (i.e., so that B

is always to the left of the direction moved if one
faces in that direction). The pulse simulates an FSM

M which remembers each direction, u,d,r, or %, it moves
in one step and marks a cell by the direction it moved
to get to the cell. If M does not mark a cell with a

u while traveling from A-cell C; to A-cell Cz, then it
can erase the state A from cell C; since C, cannot be
as high or higher than C;. M halts after marking an A-
cell in which it cannot erase the A, Thus all cells in
a boundary layer containing an A-cell (those around a
hole may not) get merked by one dirsction in perimeter
time.

ttA1l distances in this_gaper are measured using the
so-called Manhattan c1_y—b10fk meTrlc
p((1,3),(17,3")) = [i-i"| + [3-3"
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The crucial observation is that the u's and
d's taken to be right and left parentheses, respective-
ly,form a well-bracketed string in a given boundary
layer only in the case where the expression is read cw
beginninggﬁt the position of an A-cell in the topmost
row of a boundary er (there may be more than one).
The following steps exploit this observation to locate
the topmost A-cells in each boundary layer. It should
be noted that there can be no A—cell in the topmost row
of the boundary layer of a hole. (There can, however,
be an A-cell in one boundry layer which alsc lies in
another--internal--boundary layer for which it is not
an A-cell. The FSM M in (3) can set up "shared"
boundary layers toc avoid the apparent difficulty.)

(4) A consecutive pair of A-cells is an A-cell
and the nearest A-cell in the boundary layer in the cw
direction. Each consecutive pair of A-cells remaining
after step (3) and the boundary-layer cells between can
be treated as a 1-D firing squad.5 Each such squad is
made to fire simultaneously--i.e., to begin step (5)
below--on a command from a general which is the more cw
A-cell of each pair. The command is issued when M in
step (3) halts on an A-cell which it does nct erase.
This step requires perimeter time.

(5) The boundary-layer cells in each boundary are
treated as a 1-D DBCS containing an initial pattern on
the alphabet {u,d,r,8}. This space functions as a DBCS
recognizer for the Dyck language on {u,d}.! The proce-
dure would be quite simple if an entire boundary layer
were triggered at once by step (4): Each u-cell sends
its state left at unit speed (one cell per time step)
as a u-pulse, and each d-cell sends a d-pulse right at
unit speed. (Fig. 1.) When a d-pulse collides with a
u-pulse, the u-pulse is changed to a u'-pulse, and the d-
pulse is changed to a d'-pulse. If a a u'-pulse (d'-
pulse) collides with a d-pulse (u-pulse), the u'-pulse
(d'-pulse) is annihilated. If a u-pulse or d-pulse en-
counters an A-cell, then that A-cell is erased since it
must lie within a well-bracketed string. Any A-cells
remaining are in the topmost boundary-layer cells and
are identified as such when a u'-pulse or 4'-pulse
impinges upon them, assuming no u-pulse or d-pulse has
collided with the A-cell.

It is not the case, however, that an entire

boundary layer fires simultaneously as a result of step

(4), except in the special case of only one A-cell in
the boundary layer. Hence it must be shown that the
staggered firing induced by step (4) does not essential-
ly alter the procedure just described. See Fig. 2 for
an illustration of the technique used: An A-—cell deter-
mines from its neighborhood whether the firing squads
to it left and right have fired and goes into a special
state to indicate this status. If a pulse impinges on
an A-cell bordering an unfired firing squad, it backs
off one cell and maintains position until triggered to
proceed at unit speed by a special pulse, called an E-
pulse. An E-pulse is generated by an A—cell at the
moment when the unfired firing squad first begins fir-
ing (assuming the squad on the other side of the A-cell
is already firing). The E-pulse propagates away from
the newly fired squad at unit speed and is annihilated
by the first A-cell (or former A-cell) it encounters.
Should a pulse impinge on another which is maintaining
position (ie., has backed off one position), then it
too backs off one position and maintains position until
an E-pulse arrives.

(6) In a manner exactly anaslogous to steps (1)-
(5) above and occurring simultaneously with them, the
C-cells in the bottommost boundary-layer cells are loc-
ated, where a C-cell is a cell with west and south

In general, a pulse generated by a cell in state g will
be called a g-pulse, even though it may change state
during its propagation.

neighbors in the boundary state. Notice that the right-
mogst C-cell in the bottommost row is cw from the left-
most A-cell in the topmost row, and there are no A-celk
or C-cells between them after step (5).

(7) The bottommost C-cells located in step (6)
each send out an FSM M' counterclockwise (cew) in the
boundary layer. If M' encounters another C-cell, it
halts. Otherwise it proceeds to the first A-cell where
it waits for step (5) either to delete the A-cell or to
locate it in the topmost row. In the former case, M’
moves to the next A-cell and again waits for the results
of (5). In the latter case, the A-cell is the desired
unique boundary-layer cell and it is marked by a special
temporary marker. Then M' proceeds ccw, erasing every-
thing, until it returns to the special temporary marker
which it changes to the desired state $. This step
takes external perimeter time. Hence the entire proce-
dure takes perimeter time. Q.E.D.

Corollary 2,1, The accept cell is uniquely located in
the external boundary layer in external perimeter time.

Lemma 3. Given a DBCS Z, let SR = {(Xxsyl),(xz,yz),-.-,
fxs,ys)} be the set of points in arbitrary retina R con-
sisting of exactly the rightmost cell in the topmost
row of each boundary layer in R. Then the points in Sg
can be uniquely identified by Z in perimeter time. That
is, for c¢p an initial configuration entirely guiescent
on R, there is a special state $ such that Fti(ey)]
(x,y1) = $ for t; = kyp, 1<i<s, and such that [Ft'(co)]
(x,y)#$ for all t' if %x,y}'é'sﬁ for all t'<t; if (x,y)
= (xgoy1). (Showla (xi,y1) = (xyyy), 1 # 3, then
special state $' is assumed instea& of $.)

Proof. Lemma 2 provides for the location of the right-
most cell in the topmost row of the external boundary
layer in R. The technique of proof of Lemma 2 is read-
ily adapted for obtaining the other points of Sg. Let
a D-cell be a cell with southwest J; neighbor in state
B and its south and west neighbors in non-B states.
There is always a D-cell in the topmost row of the
boundary layer of a hole. The rightmost of these for
each hole boundary layer is in the set The proof
technique of Lemma 2, with 'D—cell" substituted every-
where for "A-cell" and "cecw" interchanged with "ew",
will locate the rightmost D-cell in the topmost row of
each boundary layer. Hence all points in SR are locat-
ed in perimeter time. Q.E.D.

Lemma 4. Given a DBCS Z, the outer and inner boundary
layers can be identified in perimeter time. That is,
for cp an initial configuration entirely quiescent on
retina R, there are two special states I and E such that
[Ft4eo)](x;,y1) = I for all (x;,yi) in_the boundary
layer of the i-th hole, 1<i<s-1, and [F®8(co)](xg.y5)=E
for all (xs,ys} in the external boundary layer, where

t; = kip, 1<i<s. Furthermore, [F%'(co)](x,y)#I or E
for all t' if (x,y) is not in & boundary layer of R or
for all t'<t; if (x,y) = (x;,yi), 1<i<s.

Proof. Use Lemma 3 to locate the unique A-cell of the
external boundary layer and the unique D-cell for each
internal, or hole, boundary layer. Each of these cells
acts as the general for a firing squad composed of its
respective boundary-layer cells. If the general is an
A-cell, then the squad fires by entering state E. If
the general is a D-cell, the squad fires by entering
state I. Q.E.D.

Corollary 4,1. The outer boundary layer can be identi-
fied in time proportional to the external perimeter.
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Theorem 5. For an arbitrary ABA (DABA) M, there is a
BCS (DBCS) Z which simulates M within perimeter time..
That is, if M accepts word w in language L within time
T then Z accepts w in time k(T+p), where k is a con-
stant and p is the perimeter of w.

Procf. As stated before, Z can straightforwardly sim-
ulate M in twice real time (in exactly real time if M

is deterministic). Hence, when M accepts by entering
Tinal state F, a cell in Z enters a special "pre-accept"
state F' which must be propagated to the accept cell of
Z. This is readily done in perimeter time using the
lemmss above:

During the simulation of M, Z is marking
accept cell and its outer and inner boundaries as
scribed in the proofs of the lemmas. When a cell
enters F', this cell sends an F'-pulse up until a
boundary is encountered. If the boundary has not yet
been marked inner or outer (I or E, respectively), the
F'-pulse maintains position there until it is so marked.
If the boundary is outer, then the F'-pulse simply pro-
pagates along the boundary to the accept cell of the
array, which enters an accept state for Z. If the
boundary is inner, the F'-pulse moves along the bound-
ary until it can move up again to another boundary.
Eventually the F'-pulse must encounter the outer
boundary. Q.E.D.

its
de-
in Z

Corollary 5.1. The BCS languages are precisely the
languages generated by monotonic array grammars, Tn
particular, the BCS (DBCS) languages are precisely the
languages accepted by ABA (DABA).

Corollary 5.2. If L is a monotonic array language which
can be accepted by some ABA (DABA) within perimeter time,
then L is a perimeter-time BCS (DBCS) language.

Previous work®s’ in the area of pattern recog-
nition by 2-D cellular automata has assumed rectangular
retinas (i.e., RBCS). This special subclass of the
BCS is now related to the results above, as are the SBCS.

Theorem 6. There is a DBCS Z which recognizes the lan-
guage L of all simply-connected words on arbitrary fi-
nite alphabet X within external perimeter time,

Proof. The accept cell of each retina and the outer
boundary layer are identified and labeled within exter-
nal perimeter time, as in Corollary 2.1 and Corollary
L.1. Just after the outer boundary layer is labeled,
the accept cell becomes general to the firing squad con-
sisting of the outer boundary-layer cells. Upon firing,
all of the cells which have a B to the right send a
pulse left at unit speed. Any pulse colliding with a
labeled boundary-layer cell terminates. Any pulse col-
liding with an unlebeled (i.e., inner) boundary-layer
cell rebounds at unit speed to the outer boundary, where
a reject pulse is sent to the accept cell. Meanwhile,

a timing pulse is traversing the outer boundary layer;
it is sent out from the accept cell just as the firing
squad fires. If, during two complete circuits of the
outer boundary layer by the timing pulse, no reject sig—
nal is received by the accept cell, then it accepts on
the second arrival of the timing pulse. Q.E.D.

Corollary 6.1. Any perimeter-time SBCS (DSBCS) language
is a perimeter-time BCS (DBCS) language and an external
perimeter-time BCS (DBCS) predicate.

‘heorem 7. The language L of all rectangular arrays on
& given finite alphabet X is an external perimeter-time
DBCS predicate.

Proof. There are eight possible types of "corner" cells
as indicated in Fig. 3. These are recognized and tagged
by a DBCS Z everywhere they occur in a given retina R,
This requires at most two time steps. Simultaneously,
the unigue A-cell in the outer boundary layer is loca-
ted and labeled with a § and the outer boundary layer
is labeled. This requires external perimeter time, as
guaranteed by Corollary 2.1 and Corocllary L.1. Just
after the outer btoundary layer of R is identified, the
accept cell of R sends ocut an FSM M" ccw along the
outer boundary layer. M" locks for the sequence of
corner cells NE, NW, SW, SE (see Fig. 3) where the ac-
cept cell is of course, the NE corner cell. Should M"
see a sequence of corner cells different from this as
it makes a circuit of the outer boundary layer, it
causes 7 to reject the array upon its return to the
accept cell. Otherwise, the outer boundary layer forms
a rectangle. Hence, upon the return of M", the accept
cell issues the command to fire to the firing squad
formed from the outer boundary-layer cells between, and
including, the NE and SE corner cells, which initiates
the next step (cf. Theorem 6): All cells on the east
side of the retina send a pulse left at unit speed.
Should one of these pulses collide with an unmarked
boundary-layer cell (i.e., an inner boundary-layer cell),
then it is reflected to the east side of the retina and
sent to the accept cell which promptly rejects the array
Should time elapse from the firing of the firing squad
equal to twice the length of the east and south sides
of the retina, then the accept cell accepts the array.
(A simple timing pulse sent out by the accept cell can
accomplish the clocking of this elapsed time.) Q.E.D.

Corollary 7.1 Any linear-time RBCS (DRBCS) language
is a perimeter-time BCS (DBECS) language and an external
perimeter-time BCS (DBCS) predicate.

Proof. The corollary follows immediately from Theorém
7 and the fact that any linear-time RBCS language is a
linear-time RBCS predicate.® Q.E.D.

An important example is provided by Beyer® who
constructed a DRBCS which recognizes connected black
patterns on a white background within linear time.
following is an immediate consequence:

The

Corollary 7.2 Let L be the language on {black, whitel}®
for which each word is a rectangular array containing s
connected black subset of points and having all other
points white., Then L is an external perimeter-time
DBCS predicate.
Remark. Buneman® has demonstrated a monctonic array
grammar for the L described in Corollary T.2.

The generalization of Corollary T.2 to arbitrar-
Yy connected arrays is an open problem. An example indi-
cating the difficulties involved is a black ring en-
circling, but not touching, & hole in the array.

Let a maze be any black and white rectangular
array with exactly one cccurrence each of a Start point
and a Finish point (i.e., Start and Finish are two
specially designated colors). A sclvable maze has
Start connected to Finish via a path of black points.
Beyer® has proved that solvable mazes are recognizable
in linear time by a DRBCS. Hence a second example:

Corollary T7.3. The language of solvable mazes on {black,
white, Start, Finish}* is an external perimeter-time
DBCS predicate.
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As a final adaptation of Beyer's work, we note
that linear-time RBCS languages are closed under trans-
lation (of a black Bubfigure to the right as far as
p0331ble in an array), rotation (of a square array by

90°) s, and dlla ion (of a black subfigure by a constant

*actor). der f@Teferred to Beyer®

details.

for more

The closure properties of the larger class of
BCS languages is also of interest. Richardson? has
stated that the monotonic array languages (and hence
the BCS languages) are closed under intersection, union,
non-erasing parallel transformationln, and what shall
here be called spatial concatentation, and support

closure, where the last two terms are defined as follows:

Definition, Let preimege(w) denote the subset of T+
which is the preimage of word w in array language L.
Then the spatial concatenation of L; and Lz (denoted
Li1{yLz) is the set of all words wilJ w; defined by

{w; if (i,J)e preimage (wi)
oy wal(1,0) ={, 4¢ (i,3)e preimage (wz)
where preimage (w;) Upreimage (w2) is a connected sub-
set of I? and preimage (w1)M preimage (wz) = ¢ .

Definition. For array la.nguage L, let L! = L, 1L2=LY L,
and L 1 Y L. That is, L¥ is the k-fold spatial
concatenatlon of L. Let L¥ , the set of all k-fold

spatial concatenations of L, for k finite, be called

the suggort closure of L., That is,
Fourl , for 121, 4
i

The BCS languages with time restrictions have
the following easily proved closure properties:

Theorem 8. Any external perimeter-time BCS language is
an external perimeter-time BCS predicate. The class of
external perimeter-time BCS languages is closed under
intersecticn, union, and set complement.

As an example of the closure properties of BCS
languages, consider the language L consisting of ori-
ented 45° right triangles (i.e., those which can be
translated so that the right angle vertex is at the or-
igin, each leg lies along an axis, and the hypotenuse
lies in the northwest quadrant). Kirsch? has given mo-
notonic array grammars for this language ; hence it is a
BCS language. Similarly,Dacey '! has shown that each of
the three languages obtained by rotating L by 90°, 180°,
and 270°, respectively, are also BCS languages. Hence,
by support closure, the set of polygons which can be
built from oriented 45° right triangles is also a BCS
language. In Reference 11, the proof that this language
of polygons is a BCS language is derived without benefit
of closure properties.

Special BCS Languages and Predicates

In this section, Jordan curves, the majority
predicate and Euler number, and convexity are treated
in the BCS framework. Here a Jordan curve is a closed,
nonrepeating sequence 1;,i2,...,1, of connected points
in I?--i.e., i is connected to ij,,, 1<j<n, and ip is
connected to ij. All points in a Jordan curve are in
one state, say black, with all neighboring points in
some other state if they are not in the curve.

Theorem 9. The language LC {black, white}* with each
word a rectangular array consisting of a single black
Jordan curve on_a white background is linear-time recog-

nizable by a DRBCS.

Proof. (1) The DRBCS checks for one black component
i.e., a connected black subset of points in the given
word) with one hole, Beyer® has shown that this requires

linear time,

(2) Beginning at time t+1, and hence occurring
during the execution of step (1), each black cell counts
the number of white components in its J; neighborhood.
This requires at most two time steps, by Lemma 1, and
they are subsumed by step (1). Notice that there must
be exactly two white components in the J; neighborhood
of any black cell in a Jordan curve.

(3) A firing squad is initiated by the accept
cell to trigger step (4). Initiation occurs at the
completion of step (1). For DRBCS, this requires
linear time.

(4) Each black cell which has not recorded the
presence of exactly two white components in its J)
neighborhoeod sends a reject signal tc the accept cell,
Otherwise, the accept cell waits only m+n time steps
from the time the squad fires before accepting, where
the given array has dimensions m by n. Q.E.D.

The proof of the next thecrem was given me by
Albert Meyer of MIT in a conversation heand I had at
the recent symposium on Computers and Automata, spon-
sored by Brooklyn Polytechnic Institute in New York
City. The proof is a good example of the use of numbers
to solve what is apparently a geometric problem. I also
acknowledge the help of Derick Wood of McMaster Univer-
sity who pointed out the necessity of item (6) in the
proof below.

Theorem 10. The majority predicate is linear-time rec-
ognizable by a DRBCS. That is, a DRBCS. can recognize
the language LC {black, whitel}*® with each word consist-
ing of a rectangular array with more black cells than
white cells, in linear time.

Proof. (Meyer). Assume for the moment that m<n, where
a retina has dimensions m rows by n columns. This re-
striction is relaxed in step (6).

(1) Each row shifts its black cells to the
right and its white cells to the left. That is, each
black cell sends a l-pulse to the right at unit speed
and each white cell sends a O-pulse to the left at unit
speed, where 1 represents black and O represents white.

(2) The string of 1's in each row can be
thought of as a unary number., This number is converted
to its binary representatiocn, which is then stored right
justified in its row. The conversion can be accomplish-
ed in linear time: Think of the row of cells as a reg-
ister initially conteining the binary representation of
0. The string of 1's is shifted into the rightmost cell
in this register one at a time as they arrive from the |
left. Each 1 is added to the register in binary. That |
is, each cell can form the sum of any two bits and gen- |
erate a carry. In particular it adds its current con- ‘
tents plus a carry generated at the previous step by the ]
cell on its right and generates a carry bit (0 or 1).
Similarly, the string of 0's at the left of each row is
treated as a unary number which is also converted to its
binary representation and stored "upside down" with its
least significent bit at the extreme left of its row.

A different alphabet, say {0',1'} is used for this bina-
ry number. The conversions take at most n+[logsn] time

steps. Hence a pulse which traverses a row in both di-

rections can serve as a clock for step (2) and initiate

step (3) in 2n time steps.

(3) The binary numbers at the right end of each
row are sent down the retina at unit speed. The bottom
row acts as an accumulator which forms the sum of its
current contents with the contents of the row above.
Thus each cell must be able to form the sum of two bits
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plus a carry bit generated by the cell on its right.
The arrival of the topmost row signals the addition of
the final, or m-th,addend. The propagation of & carry
requires at most [logmn]<2[Togen| additional steps. A
formed simultaneously at the upper left
of the retina from t inary numbers stored at the
left of each row. Hence at the completion of this step,
within m+riog2mﬁT time steps, there are two binary num-
bers in the retina. The number at the lower right is
the number of black cells and the number at the upper
left is the number of white cells. A clock pulse which
traverses one row in both directions signals completion
of this step and initiates the next step.

(4) The number at the upper left is reversed
and right justified. This can be done’ in time propor -
tional to n. Then the next step is initiated by a
firing squad.

(5) The binary number at the lower right is
sent up the retina at unit speed. The topmost row takes
the difference between the two numbers and furnishes a
sign indicating whether the number of black cells was
greater than (+) the number of white cells or the number
of black cells was less than or equal to (-) the number
of white cells. The sign is sent to the accept cell.

() For the cas= of arbitrary m, it may be that
one or both of the two numbers generated in (3) do not
fit in one row. For example, if m>2%/n and the entire
retina is black, then a number of length larger than n
must fit in one row. Thus during the additions in step -
(3), an overflow would occur. Any such overflow signal
is propagated to the accept cell. But clearly, if m>n,
then n<m and the procedure outlined in steps (1)-(5)
above,—interchanging rows with columns, must work with-
out overflows. Call the procedure as outlined in (1)-
(5) above the "row approach" and the same procedure,
with interchanged columns and rows, the "column approadi.
The DRBCS for the theorem will carry out steps (1)-(5)
simultaneously but independently for both the row and
column approaches. If an overflow signal is received
at the accept cell for one of the approaches, then the
result generated by that approach is ignored. Q.E.D.

Corellary 10.1. The set of all words of rectangular
shape on {black,white}* with positive Euler number (i.e,
with more components than holes) is a linear-time DRBCS
predicate.

Proof. See Beyers, pp. 91-92.
Another interesting topological property is
convexity. Here each cell in I? will be thought of as

representing & square subset of points in E? (the real
plane). That is, the cell at peint (i,3j) will repre-
sent all points in {(x,y)[i-1/2<x<i+1/2, 3-1/2<y<j+1/2},
A cellular map is a finite nonempty subset of cells in
B2, By the definition of convexity for Ez, a convex cel—
lular map is simply a rectangle. Hence, by Theorem T,
real convexity is an external perimeter-time DBCS gre—
dicate. The following defintions (after Sklansky'?) are
intended to provide a more interesting notion of con-
vexity for cellular spaces.

The ?oundarx bJ of cellular map J is the bound-
ary of the union of the cells of J. The cellular bound-
ary By of J is the union of cells in J containing at
least one point of by. If there is a Jordan curve of
cells representing precisely the cells of By then call
this curve the irredundant boundary chain Yy of J. Let
g7 be the union of the boundaries of the cells in Yg.if
ig exists, less the boundaries between cells of y..
(N.B., g ;ij.) The core boundary bCy of J is the set
»f all points in g, not connected (in the real sense)
to by. The core Cy of J is the union of bC, and its
interior. J is said to be cored if and only if Cy#¢.

(N.B., is simply connected and touches every cell in
Br.) A fellular blob is & cored cellular map. Not all

Similarly, Cr; denotes those cells which represent C

connected cellular maps are cellular blobs--e.g., the
cellular map represented by Ha.

A figure is a finite simply-connected subset
of Ez-—i.e., a simple closed curve and its interior.
A figure is convex if it contains the line segment that
Joins any two points of the figure, A cellular map J
is an image of a figure p if and only if either (1)T-p
and every cell in J containing a point not in p contains
a boundary point of p, or (2) p is the limit of a se-
quence of figures each of which satisfies (1), Let
I(p) be one of the images of Pigure p (there may be
more than one, see Sklansky'?, p. 6). A polygon is a
figure whose boundary contains only (nonintersecting)
straight line segments., A minimum perimeter polygon (MP)
of J is any polygon p such that I{p) = J and such that
there does not exist a polygon q with perimeter legs
than that of p and such that I(q) = J.

Defimtion. A cellular blcb J is convex if and only if
there is at least one convex figure v such that
I(v) = J.

Theorem 11 (Sklansky). A cellular blob has a unique
minimum-perimeter polygon. A cellular blob is convex
if and only if its minimum-perimeter polygon is convex.

In the following proofs, B; will be used as an
abbreviation for the boundary layer which represents Bj.
-

Lemma 12. Simply_connected cellular blobs on finite
alphabet X are recognizable in external perimeter timeby
DBCS.,

Proof. (1) That a given retina is simply connected is
determined within external perimeter time by DBCS, by
Theorem 6. If the DBCS determines that the retina is
simply connected, then the accept cell emits an FSM
which traverses the boundary layer and leaves a tag in
each cell visited, If it tries to tag an already tag-
ged cell, then a redundant boundary chain is detected
and a reject signal is sent to the accept cell. Other-
wise, the FSM completes its circuit of Bs to the accept
cell, which then initiates step (2) below. A pattern
which is not rejected by this step represents a simply
connected cellular map with an irredundant boundary
chain which is a cellular blob if it is also cored.
Step (2) checks for a nonempty core.

(2) The accept cell initiates a firing squad in
By just as it accepts the property cf step (1). When
By fires, each cell checks for a neighbor which is nei-
ther a B-cell nor a cell in Bj--i.e., checks for a cell
in Cy. BEach cell which detects such a neighbor sends
an accept signal to the accept cell via BJ. One accept
signal is sufficient for the accept cell to accept with-
in external perimeter time. Q.E.D.

Theorem 13. The set of convex cellular blobs is an ex—
ternal perimeter-time DBCS predicate.

The proof of this theorem is quite lengthy and
is hence delayed to a forthcoming paper on recognition
of convexity by cellular automata. Briefly, Lemma. 12
is used to detect retinas representing simply-connected
cellular blobs, Then several tests are made to reject
cellular blobs with obviously concave minimum-perimeter
polygons. For example, Fig. 4 shows two cases which
would be immediately rejected. A cellular blob J which
passes all these tests has core Cy with a boundary b
composed entirely of "stairsteps" of height one or two,
One final, nontrivial test is then applied to check for
a convex minimum-perimeter polygon.
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A defintion of convexity which is much more
reatrictive than that Just discussed is the go=called
x-y convexity of Unger.!? A simply-connected cellular
map J is x-y convex if, for arbitrary point (i,3) in J,
- (1) there is no point (i,7') in J such that points (i,
a),3'<@s), areynot in J, and (2) there is 1o point (i',
3) in J such that points (b,3), 1'<b<i, ere not in J.
The reader can readily verify the Text theorem with the
use of Thecrem 6.

Theorem 14, The set of x-y convex cellular maps is an
external perimeter-time DBCS predicate.
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Fig. 1.

Dyek boundary language recognition.
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