
Matrix Conventions Revisited
Technical Memo No. 64

Alvy Ray Smith

Computer Graphics Project
Computer Division

Lucasfilm Ltd

Revised 24 June 1983

This document was reentered by Alvy Ray Smith in Microsoft Word on May 5, 1999. Spelling and
punctuation are generally preserved, but trivially minor spelling errors are corrected. The quaint
form of the early language C is preserved. Otherwise additions or changes made to the original
are noted inside square brackets or in footnotes.

Introduction
Our matrix and transformation conventions need to be restated and backed

up with code to encourage their use. Since the modeling and rendering systems
are currently being redesigned, it is a good time to ask that they be built accord-
ing to convention. Some packages to ease this task will be presented here.

An example of what I would like to avoid in the future is the state of affairs
currently existing between “med” and “reyes”1. The field of view for “med” is
taken to be one-half the total view angle in the vertical direction. For “reyes”, it is
taken to be the total horizontal viewing angle. In “med” the aspect ratio is the
ratio of the Picture System2 width to height in the display (non-menu) portion of
the screen. For “reyes”, the aspect ratio is the aspect ratio of an Ikonas3 frame-
buffer pixel4 (which is not the aspect ratio of the corresponding video). It is not at
all obvious to a user how to get a picture displayed by “med” in the Picture Sys-
tem to appear in the framebuffer with exactly the same relative shape and orien-
tation when rendered there by “reyes”.

What we want is a default path from model language through calligraphic
display to raster display which is natural and requires no input from the user.
And all along the path control would be according to convention.

Table of Contents
In addition to the text there are included in this memo several appendices:

1 The modeling and rendering programs, respectively, in use at Lucasfilm at the time.
2 A calligraphic line-drawing system by Evans & Sutherland Corporation.
3 With a full-color raster scan display device.
4 I would now say “pixel spacing”, pixels themselves being point samples without height and
width.

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

2

Appendix 1: The MxMatrix Package
Appendix 2: The CmxMatrix Package
Appendix 3: The aa_matrix Package
Appendix 4: The VxVector Package
Appendix 5: The VuSpec Package
Appendix 6: The CvuSpec Package
Appendix 7: The aa_view, aa_display, and aa_vutrix Packages
Appendix 8: The mx Matrix Desk Calculator

These may be considered to be manuals for the routines implementing the ideas
here and those of Tech Memo 84. The modules are located in /u0/gfx/lib/libmx.a.

A Proposed Scenario
In Tech Memo 84, “The Viewing Transformation”, the entire viewing trans-

formation of a point p in model space is given by
pNPS,

where N is the normalizing transformation which maps a given viewing frustum in
model space into the canonical viewing frustum, P is the perspective transformation
which maps the canonical viewing frustum into normalized device coordinates
(NDC), and S is the screen mapping which maps NDC into a desired display
space.

The canonical viewing frustum has its eyepoint at the origin and its far face
in the z = 1 plane, and the far face has xy widths of 2 and is centered on the z axis.
The P matrix transforms the canonical viewing frustum into NDC which is a rec-
tangular prism having every constant z section equal in shape and size to the far
face of the canonical viewing volume, for 0 1≤ ≤z . Thus x and y are on [-1, 1].

Clipping occurs on the points pN in the canonical viewing frustum (where
clipping is relatively easy). Division by the homogeneous coordinate is per-
formed on the points pNP in NDC. Hidden surface calculations are then applied
to these points in NDC. Any further transformations of the image are applied at
this juncture—for example, mapping the result onto a view screen seen obliquely
(e.g., as a tactical display in a movie scene). Then, finally, the image is mapped to
a desired display such as a Picture System, or Iris5, or Ikonas, or Pixar6 memory
window. This screen mapping takes nonsquare pixels7 into account, if necessary,
and turns the y coordinate upside down, if necessary.

Modeling and animation perform operations on a model database. Let q be a
point in such a database. Then p qT= represents the end result of these opera-
tions, where T represents a sequence of transformations such as scales, translates,
and rotates. The points p are those delivered to the viewing pipeline discussed
above. In general, qT should be followed by a homogeneous divide. This is not
true if only scales, translates, and rotates are permitted. In most systems this is

5 By Silicon Graphics.
6 A Pixar Image Computer.
7 Ie, nonsquare pixel spacing.

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

3

the case, but I will propose below that global scale (which affects the [3, 3] ele-
ment of the transformation matrix) and “full perspective” (affecting the [0, 3], [1,
3], or [2, 3] elements) be allowed. If the 4th column of the transformation matrix is
affected, then the divide is necessary.

Animation also performs operations on the viewing parameters—i.e., the
simulated camera. These are realized by the matrices N and P. N is conveniently
decomposed into N L and NR when animating the camera; only N L changes as
the camera moves. Clipping is not performed by the animation process. For gen-
erality of application, the modeling/animation pipeline could be asked to return
models in NDC as well as in model space.

Rendering is the process which takes the modified database and viewing pa-
rameters from the modeling/animation processes, clips the results, performs
hidden surface calculations if necessary, and then, of course, renders the result
into some display. So rendering needs the points p qT= and the matrices N and
P to perform clipping on the point pN and homogeneous divide on pNP for
those points which survive clipping. Again, for generality of application, render-
ing could be asked to return results in NDC.

Variations on the Basic Scenario
Animating the camera is almost identical to animating any other rigid model.

In fact, we could represent the viewing parameters by a special model, the camera
model, and a transformation Tc , the camera transformation. Tc would be restricted
to scales, translates, rotates, and skews8. The camera model would be a default
camera viewing pyramid with the eyepoint at the origin of model space being
the apex and the view window being the base. The sizes of the default camera
pyramid would be dictated by the default viewing parameters (see Tech Memo
84 and below). Only two parameters are missing from the camera model neces-
sary for defining the view: hte near and far clipping plane locations. These two
parameters plus the camera model and camera transformation are equivalent to
the set of viewing parameters. This could be an alternative convention for the
view spec. It has the feature that it makes the camera animation just like that of
any other model. Depicting the view of an oracle camera would be straightfor-
ward also.

However, it has been pointed out that the camera is treated in special ways.
For example, it is common to want to pan the camera through an angle. If only
position information were stored for keyframe camera information, then interpo-
lation through angles would not be straightforward. But this same argument
could be used for arbitrary models. Just as we save transformation parameters
for an arbitrary model in order to do correct interpolation (as opposed to saving
just the matrix), we would do the same for the camera model.

8 A future project: Extend the camera transformation (hence view spec) to arbitrary 4x4 transfor-
mations.

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

4

Nonstandard Transformations
It is well-known that with one 4x4 matrix all standard transformations can be

effected. Thus a 3-D transformation is accomplished by multiplying a matrix of
form

𝐌 = �

𝑠 𝑆 𝑆 𝑝
𝑆 𝑠 𝑆 𝑝
𝑆 𝑆 𝑠 𝑝
𝑡 𝑡 𝑡 𝑔

�

times each 4-D point in a model (three coordinates for position and a unity ho-
mogeneous coordinate). Here s stands for scale, S for skew (sometimes called
shear), t for translate, p for perspective, and g for global scale. Most transfor-
mation systems realize rotation, scale, and translation with such a matrix. Rota-
tion is realized by a combination of s and S entries, it being known that rotation
about a principal axis can be accomplished with two skews and two scales.

It is not so common for systems to make use of the skew entries as such (i.e.,
independently of rotation), nor do they use the global scale g entry nor two of the
three perspective p entries. This is a shame since they are freely given parameters
in a 4x4 matrix system. Global scaling by a factor a is just as easily accomplished

by setting the three s entries to a as by setting g to 1
a

, so it is not too surprising

that this entry is ignored. But skew and perspective are quite useful parameters.
The problem is probably due to the lack of intuitive controls for these parame-
ters, or perhaps it is due to confusion of these parameters with “standard per-
spective” as typically implemented in the viewing transformation (see Tech
Memo 84).

A command format for utilizing the skew S entries is exemplified by skew x y
.5, read “skew x’s as y increases by .5y” or “skew towards x, as a function of y”.
This means that each point of the model is shifted right (meaning positive x here)
depending on how large its y value is. In fact, x x y= +.5 . It is implemented by
simply setting Mij to .5, where Mij is the S entry for the (i+1)th row and (j+1)th
column of 4x4 transformation matrix M. The mapping of i and j to principal axes
is 0 for x, 1 for y, and 2 for z. j is assigned to the first argument of the skew com-
mand and i to the second; so M10 5=. in this example. Figure SKEW may be help-
ful in calibrating one’s intuition on this command. It is the unit square with the
origin at lower left. The skew command above causes the upper edge to shift
right by one half its length.

A decision has to be made on this command as to what to do for the case
skew x x .5. It is either disallowed, or defaults to scale x by .5 or by the logically
consistent value 1.5. I prefer this last option.

Skew is handy, not for viewing, but for modeling. Simimlarly, perspective
can be useful for modeling. It can be implemented as a command such as pers x a
which is read “apply perspective along x axis with vanishing point at x a= “. See

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

5

Figure PERSP for intuition building. The corresponding implementation is simp-

ly Mi a3
1

= , where i is mapped to the principal axes as above. In particular,

M03
1

=
a

 in our sample perspective command above. Clearly a = 0 is a problem,

so this value should be disallowed. It is desirable to be able to set a to ∞ occa-
sionally. The disallowed value of 0 can be used to force a 0 entry in the matrix for
this case. As indicated in the figure, values of a which fall inside the model may
cause problems. It is this strangeness which perhaps has kept this set of parame-
ters unpopular. Nevertheless, they are powerful shapers and give a user a very
good sense of perspective in general—i.e., including “standard perspective”. For
example, notice in the figure that the point 0 1 0 is unchanged by the per-
spective matrix.

A final transformation which is not always implemented is rotation about an

1 1

11

skew x y .5

Figure SKEW

1 1

11

pers x 2

2

Figure PERSP

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

6

arbitrary axis through the origin. This is probably omitted in many implementa-
tions because it does not fall out trivially. It is not difficult, however. Let α , β ,
and γ represent the direction cosines for the desired axis with respect to the x, y,
and z axes, respectively. So α β γ is the unit vector along the axis of rota-
tion. Let θ be the desired angle of rotation about the new axis. Then the rotation
matrix is ([ROGADM]):

𝐑 =

⎣
⎢
⎢
⎡ 𝛼2 + (1 − 𝛼2)cos𝜃 𝛼𝛽(1 − cos𝜃) + 𝛾sin𝜃 𝛼𝛾(1 − cos𝜃) − 𝛽sin𝜃 0
𝛼𝛽(1 − cos𝜃) − 𝛾sin𝜃 𝛽2 + (1 − 𝛽2)cos𝜃 𝛽𝛾(1 − cos𝜃) + 𝛼sin𝜃 0
𝛼𝛾(1 − cos𝜃) + 𝛽sin𝜃 𝛽𝛾(1 − cos𝜃) − 𝛼sin𝜃 𝛾2 + (1 − 𝛾𝛼2)cos𝜃 0

0 0 0 1⎦
⎥
⎥
⎤
.

Positive rotation is defined by the righthand rule along the axis of rotation.

Proposed 3-D Transformation Conventions
Here are a set of proposed conventions:

1. Computer Graphics Normal Form will be assumed: Vectors (points) are as-
sumed to be row vectors. They are post-multiplied by matrices—i.e., the ma-
trix is written to the right of the row vector it multiplies. Successive trans-
formations premultiply the current transformation matrix. M[][]i j is the
(i+1)th row, (j+1)th column of matrix M. This is how C defines matrices but is
the reverse of the usual xy order for specifying 2-D arrays.

2. Model space is righthanded with z up, x right, and y in. It is sometimes con-
venient to think of model space as a coordinate system on a map spread on a
table. x points east, y points north, and z points up from the table.

3. The viewing transformation is as defined in Tech Memo 84 with Normalized
Device Coordinates (NDC) defined as lefthanded, z in, x right, and y up with
z on [0., 1.] and x and y each on [-1., 1.].

4. The view spec is as defined in Tech Memo 84. Routines for reading and writ-
ing it will be provided. The default values are as given in Tech Memo 84. The
ascii version of this spec is the conventional form for communication between pro-
grams.

5. Aspect ratio is defined as width to height. Field-of-view angle is defined as
the full horizontal viewing angle. These parameters do not appear in the
view spec but routines are provided which make all necessary conversions.

6. Modeling/animation programs will return models in model space, and the
view as the conventional view spec (ascii form). They will return a view of a
model in NDC if requested.

7. Rendering programs will read a model in model space with a view specified
conventionally. They will return a view of a model in NDC if requested.

8. The view spec is in world space coordinates.
9. All angles are positive by the righthand rule whether the coordinate system

is righthanded or lefthanded. The only exceptions are those special angles
known as azimuth, pitch, and roll. Azimuth is positive about the z axis by the

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

7

lefthand rule, with 0 degrees being at the positive y axis. Pitch is positive
above the xy plane (in the positive z direction), negative below, and 0 degrees
at the plane. Roll is positive by the lefthand rule along its axis of rotation, the
ViewNormal. It is 0 degrees when a radius vector from the axis of rotation
points right, parallel the xy plane, as viewed looking in the direction of the
ViewNormal.

10. The display spec is as in Tech Memo 84. Routines for reading and writing it
will be provided. The default values are as given in Tech Memo 84. The ascii
version of this spec is the conventional form of inter-program communication.

11. Since the full screen aspect ratio of a display device may be changed on pur-
pose (as for Star Trek II) or by ordinary drift, 3-D programs should take it as
an argument.

12. Far planes at infinity should be allowed, but it must be understood that they
are a special case requiring extraordinary treatment. For example, the notion
of canonical viewing frustum must be extended to infinity as explained in
Tech Memo 84.

The matrix packages below are meant to help with these conventions.

Matrix Packages
I have noticed that there are several matrix packages around:

1. My own in /u0/alvy/lib/libfbx.a which is used in “fbx” and “gene”. This
package is closely related to an “aarg” front end. It has the standard stuff for
4x4 transformation matrix formation and not so usual routines for matrix
printing and setting, unusual perspective manipulations, global scaling, and
skew. It does not have matrix-by-matrix operations or matrix-by-scalar oper-
ations but does have matrix inversion. The package works only for 4x4 ma-
trices.

2. The matrix(3) package written by Tom Duff and used with variations by Bill
Reeves and Tom Duff. This has the usual transformation stuff plus window-
ing and viewport. It has matrix-by-matrix ops and matrix-by-scalar ops. It
does not allow one to get at all the entries of the matrix. Skew and full per-
spective are not implemented. It has dangerous names such as “scale”, “ro-
tate”, and “ident”. It is general for NxN matrices but compiled for 4x4s.

3. Cpac(3) uses its own version of a matrix package because it is doing the
weird stuff required by the Picture System. It uses dangerous names such as
“Scale” and “Rotate”.

4. Loren doesn’t use any matrices and uses his own viewport routines for
“reyes”.

A Matrix and Viewing Transformation Package
A matrix package is presented here which incorporates the best features of

the packages above, hopefully replacing all of them (and simply being used in
those cases where matrices are currently not used). See Appendices 1-7. It is

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

8

meant to make implementation of the transformation conventions above a
straightforward matter. It features the following:

1. All package routines have distinctive and mnemonic prefixes. All matrix rou-
tines to be used globally are prefixed with “Mx” (for “Matrix” or for “Matrix
xformation”)—e.g., MxScale(), MxRotate()—or with “Cmx” (for “Current ma-
trix” or “Currnet matrix xformation”). See Appendices 1 and 2. All viewing
routines are prefixed with “Vu” or with “Cvu” (for “Current view”). See Ap-
pendices 5 and 6.

2. All angles are expressed in degrees. Routines are provided for converting to
and from radians.

3. The primary axes are referred to by one of ‘[xyzXYZ]’. Upper case and lower
case designations are interchangeable.

4. The following traditional transformations are available: identity, scale, trans-
late, rotate about the major axes.

5. The following less common transformations are also available: skew, full
perspective (not to be confused with the “real world” perspective transfor-
mation defined in Tech Memo 84), global scale, and rotate about arbitrary
axes through the origin.

6. The notion of current transformation matrix is supported and a set of rou-
tines provided for its maintenance: push, pop, concatenate (from left and
right), print it, set it, etc. Similarly, the notion of current view is supported by
a set routines for its maintenance: push, pop, print it, set it, etc.

7. The matrix package is independent of the current transformation matrix if
desired. For example, there should be two routines for rotation: one
premultiplies the current transformation matrix with the matrix describing
the given rotation command, the other simply returns the matrix describing
the rotation. Similarly, the view package is independent of the current view
if desired.

8. The matrix package supports all common matrix-by-matrix operations and
matrix inversion and matrix transposition. It also supports vector-by-matrix,
scalar-by-matrix, vector-by-vector, and scalar-by-vector operations.

9. There should be an “aarg” interface to the packages. See Appendices 3 and 7.
10. A vector package is provided with routines prefixed by “Vx”. It is intimate

with the matrix package. All common vector-vector operations are provided.
Dot product and length are provided.

11. The screen map of Tech Memo 84 is fully supported by the view package.
12. Tech Memo 84 is fully supported in the sense that all matrices described in

the memo are available with routines in the view package.
13. Infinite far planes are supported but the user must be careful (as explained in

Tech Memo 84).

Reference
[ROGADM]

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

9

David F. Rogers and J. Alan Adams, Mathematical Elements for Computer
Graphics, McGraw-Hill Book Company, San Francisco, 1976.

Appendix 1: The MxMatrix Package
Following is a brief description of the routines in this package. This set of

routines has no notion of a Cmx (current transform matrix) [see Appendix 2]. I
borrow extensively from code by Tom Duff and earlier versions of my own ma-
trix package. In particular, I preserve Tom’s notion of leaving the code general
for MX_N × MX_N matrices but compiling it for MX_N ≡ 4. Those routines, such
as rotate, which are inherently 3-D routines and hence not independent of MX_N
are compiled into a separate module. The full rotate code is based on the
[ROGADM] derivation.

In no case will parameter name cause trouble. For example, MxMultiply(a,
b, b) doesn’t cause any part of b to be clobbered prematurely.

The source resides in files MxMatrix.h, MxMatrix.c, MxMatrix4.c.

#define MX_N 4
#include <MxMatrix.h>
typedef double matrix[MX_N][MX_N];
typedef double vector[MX_N];
matrix Cmx;

MxCopy(a, b)
matrix a, b;

Copy a to b.

MxTranspose(a, r)
matrix a, r;

Transpose a into result r.

MxIdentity(a)
matrix a;

Store the identity matrix in a.

MxScalar Multiply(s, a, r)
matrix a, r;
double s;

Multiply a by scalar s; put result in r.

MxVectorMultiply(p, a, q)
matrix a;
vector p, q;

Multiply vector p by matrix a; put result in q. No perspective division is
done.

MxNegate(a, r)
matrix a, r;

Negate a; put result in r.

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

10

MxAdd(a, b, r)
matrix a, b, r;

Add a and b; put result in r.

MxSubtract(a, b, r)
matrix a, b, r;

Subtract b from a; put result in r.

MxMultiply(a, b, r)
matrix a, b, r;

Multiply a by b; put result in r.

MxDivide(a, b, r)
matrix a, b, r;

Multiply a by the inverse of b; put result in r.

MxReverseDivide(a, b, r)
matrix a, b, r;

Multiply the inverse of a by b; put result in r.

MxStackInit()
Initialize the matrix stack.

char* MxPush(m)
matrix m;

Push m onto the matrix stack. Normal return is NULL. There is an error mes-
sage returned in case of stack overflow. The length of the stack MX_STKLEN
is defined in MxMatrix.h.

char* MxPop(m)
matrix m;

Pop the matrix stack into m. Normal return is NULL. There is an error mes-
sage returned in case of stack underflow.

double MxTransform(a, b, m)
vector a, b;
matrix m;

Transform a by m (including perspective divide); put result in b. The return
value is the homogeneous coordinate before dividing. If the transformed
point is at infinity, no division is done.

double MxInvert(a, r)
matrix a, r;

Invert matrix a; put result in r. The return value is the determinant of a. If the
determinant is zero, m is singular, and r contains garbage. The method used
is Gaussian elimination with partial pivoting. Note that this method tends to
be ill-conditioned for large MX_N.

double MxDeterminant(a)
matrix a;

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

11

Return the determinant of matrix a.

MxPrint(m)
matrix m;

Print matrix m.

MxGet(m)
matrix m;

Get MX_N × MX_N parameters from a tty to define matrix m, row-first or-
der.

The following routines are dependent on MX_N ≡ 3 or MX_N ≡ 4:

MxScale(sx, sy, sz, m)
double sx, sy, sz;
matrix m;

Place a scaling transformation in m.

MxGlobalScale(s, m)
double s;
matrix m;

Place a global scaling transformation in m. The inverse of s is inserted in the
m[3][3] element, except s ≡ 0. causes a 0. to be inserted in the m[3][3] element.
It is probably good practice to use MxScale(), with equal arguments, instead.

MxTranslate(dx, dy, dz, m)
double dx, dy, dz;
matrix m;

Place a translation in m.

double MxRadians(angle)
double angle;

Converts angle in degrees to radians.

double MxDegrees(angle)
double angle;

Converts angle in radians to degrees.

MxRotate(angle, axis, m)
double angle;
char axis;
matrix m;

Place a rotation by angle degrees about the given axis in m. The axis is denot-
ed by one of ‘[XYZxyz]’. Positive rotation follows the righthand rule.

MxFullRotate(angle, axisvector, m)
double angle;
vector axisvector;
matrix m;

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

12

Place a rotation by angle degrees about the given axis in m. The axisvector is
the direction of an axis which passes through the origin. Positive rotation fol-
lows the righthand rule about the given axisvector.

MxSkew(coordinate, axis, factor, m)
char coordinate, axis;
double factor;
matrix m;

Skew coordinate as a linear function of axis—e.g., skew y as a linear function
of x. The function computed is coordinate += axis*factor. If coordinate is the
same as axis, then it is simply scaled by (1 + factor). Place resulting transfor-
mation in m.

MxFullPerspective(a, b, c, m)
double a, b, c;
matrix m;

For arbitrary mucking about with the “perspective” elements of the standard
4x4 matrix transform. The three arguments are assumed to be vanishing
points on the corresponding x, y, z axes. The resulting transformation is
placed in m. If a, b, or c is 0., the corresponding vanishing point is set to infin-
ity.

Appendix 2: The CmxMatrix Package
This is the specialization of the MxMatrix package for the notion of a “current

matrix” or “Cmx”. These routines are not simply calls to the MxMatrix package
but have been optimized for speed in the case of scale, translate, rotate, skew,
global scale, full rotate, full perspective, copy, push, and pop. MX_N ≡ 4 is as-
sumed. The source is CmxMatrix.c.

CmxCopyTo(m)
matrix m;

Copy Cmx to m.

CmxCopyFrom(m)
matrix m;

Copy m into Cmx.

CmxTranspose()
Transpose Cmx.

CmxIdentity()
Store identity matrix in Cmx.

CmxScalarMultiply(s)
double s;

Multiply Cmx by scalar s.

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

13

CmxVectorMultiply(p, q)
vector p, q;

Multiply point (vector) p by Cmx and place result in q. No perspective divi-
sion is done.

CmxNegate()
Negate Cmx.

CmxAdd(a)
matrix a;

Add a to Cmx.

CmxSubtract(a)
matrix a;

Subtract a from Cmx.

CmxConcat(m)
matrix m;

Concatenate (multiply) m onto Cmx (from the left).

CmxRightConcat(m)
matrix m;

Concatenate (multiply) m onto Cmx from the right.

CmxDivide(a)
matrix a;

Multiply Cmx by inverse of a—i.e., Cmx = Cmx*inverse(a).

CmxReverseDivide(a)
matrix a;

Multiply Cmx by inverse of a from reverse side—i.e., Cmx = inverse(a)* Cmx.

CmxStackInit()
Initialize the matrix stack. This is identical to MxStackInit().

char* CmxPush()
Push Cmx on the matrix stack. An error message is returned for stack over-
flow, else NULL is returned.

char* CmxPop()
Pop the matrix stack into Cmx. An error message is returned for stack under-
flow, else NULL is returned.

double CmxTransform(a, b)
vector a, b;

Transform a by Cmx (including perspective divide); put result in b. The re-
turn value is the homogeneous coordinate before dividing. If the trans-
formed point is at infinity, no division is done.

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

14

double CmxInvert()
Invert Cmx. The return value is the determinant of Cmx. If the determinant is
zero, Cmx is singular and is left unchanged.

double CmxDeterminant()
Return the determinant of Cmx.

CmxPrint()
Print Cmx.

CmxGet()
Get MX_N × MX_N parameters from a tty to define Cmx, row-first order.

CmxScale(sx, sy, sz)
double sx, sy, sz;

Concatenate a scaling transformation onto Cmx.

CmxGlobalScale(s)
double s;

Concatenate a global scaling transformation onto Cmx. s ≡ 0. may place
points at infinity so should be avoided. CmxScale() should normally be used
instead of this routine.

CmxTranslate(dx, dy, dz)
double dx, dy, dz;

Concatenate a translation onto Cmx.

CmxRotate(angle, axis)
double angle;
char axis;

Concatenate a rotation by angle degrees about the given axis onto Cmx. The
axis is denoted by one of ‘[XYZxyz]’. Positive rotation follows the righthand
rule.

CmxFullRotate(angle, axisvector)
double angle;
vector axisvector;

Concatenate a rotation by angle degrees about the given axis onto Cmx. The
axisvector is the direction of an axis which passes through the origin. Positive
rotation follows the righthand rule about the given axisvector.

CmxSkew(coordinate, axis, factor)
char coordinate, axis;
double factor;

Skew coordinate as a linear function of axis—e.g., skew y as a linear function
of x. The function computed is coordinate += axis*factor. If coordinate is the
same as axis, then it is simply scaled by (1 + factor). [The skew is concatenated
onto Cmx.]

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

15

CmxFullPerspective(a, b, c)
double a, b, c;

For arbitrary mucking about with the “perspective” elements of the standard
4x4 matrix transform. The three arguments are assumed to be vanishing
points on the corresponding x, y, z axes. The resulting matrix is concatenated
with Cmx. If a, b, or c is 0., the corresponding vanishing point is set to infini-
ty.

Appendix 3: The aa_matrix Package
Following is the help message for the aa_matrix package. It is intended to be a

front-end to those parts of the CmxMatrix package typically used for computer
graphics manipulations. The source is files matrixaarg.h, aa_matrix.c.

[-ident] Set current matrix to identity
[-move %F [%F [%F]]] Translate x y z [0. by default]
[-trans %F [%F [%F]]] Translate x y z [0. by default]
[-rot %F %c] Rotate angle (degrees) about axis ([xyzXYZ])
[-rotate %F %F %F %F] Rotate angle about axis given by vector (x, y, z)
[-radians [%c]] Radians switch (arg=[TFtf]) [default F]
[-scale %F [%F [%F]]] Scale x y z [1. by default]
[-gscale %F] Global scale
[-skew %c %c %f] Skew coordinate in direction of axis
[-pers [%F [%F [%F]]]] Set perspective vanishing points in x, y, z
[-pop] Pop matrix stack into current matrix
[-push] Push current matrix onto matrix stack
[-stkinit] Initialize matrix stack
[-transpose] Transpose current matrix
[-invert] Invert current matrix
[-mset %d<0,3> %d<0,3> %F] Set current matrix element
[-mget] Set current matrix from keyboard
[-mprint] Print current matrix
[-mverbose [%c]] Verbose matrix switch (arg=[TFtf]) [default F]

Appendix 4: The VxVector Package
Following are the vector routines in the VxVector package. The source files

are VxVector.c, VxVector_4.c. The latter is similar to the MxMatrix package in be-
ing general for arbitrary MX_N at compile time, compiled for MX_N ≡ 4 here.
The former assumes 4-element vectors also, but the fourth element is assumed to
be a homogeneous coordinate and treated accordingly. The routines described
here are principally those of VxVector.c. For nearly every routine there is a corre-
sponding one in VxVector_4.c which does not treat the fourth element specially.
These routines have the same name with _4 appended. They are not described
except for VxCross_4() which is substantially different from VxCross().

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

16

For the module VxVector.o, the homogeneous coordinate is simply copied in-
to the result vector in case of single operand functions, such as VxNegate(). For
double operand functions, such as VxAdd(), the result homogeneous coordinate
depends on those of the two operands. In general, if they are equal then the re-
sult vector homogeneous coordinate is simply a copy of one of the homogeneous
coordinates of the operands. If unequal, the two operands are silently divided
through by their respective homogeneous coordinates (see VxHomoDivide()) be-
fore the operation is performed, and the result vector homogeneous coordinate
set to 1.

#define MX_N 4
#include <MxMatrix.h>
typedef double vector[MX_N];
typedef double matrix[MX_N][MX_N];
matrix Cmx;

VxCopy(a, b)
vector a, b;

Copies a to b.

double* VxScalarMultiply(s, a, r)
vector a, r;
double s;

Multiply a by scalar s; put result in r and return its address9.

double* VxNegate(a, r)
vector a, r;

Negate a; put result in r and return its address.

double* VxAdd(a, b, r)
vector a, b, r;

Add a and b; put result in r and return its address.

double* VxSubtract(a, b, r)
vector a, b, r;

Subtract b from a; put result in r and return its address.

double VxDot(a, b)
vector a, b;

Return the dot product of vectors a and b. That is, multiply row vector a
times column vector b to get a scalar. If the homogeneous coordinates are
unequal to 1., a division of the vectors by their respective homogeneous co-
ordinates is performed before the dot product is computed.

double VxLength(a)
vector a;

9 Seems quaint now. Cleaner to define it vector VxScalarMultiply(s, a, r). Similarly for the follow-
ing routines. Couldn’t do so at the time, as I recall.

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

17

Return the length of vector a. The vector is divided through by the homoge-
neous coordinate a[3], if it is unequal to 1, before the length is computed.

double* VxNormalize(a, r)
vector a, r;

Normalize vector a; put resulting unit vector in r and return its address.

double* VxFloor(a, r)
vector a, r;

Take the floor of each element of vector a; put result in r and return its ad-
dress.

VxMultiply(a, b, m)
vector a, b;
matrix m;

Multiply column vector a times row vector b to get matrix m.

double* VxLerp(s, a, b, r)
double s;
vector a, b, r;

Perform the linear interpolation from a to b by amount s and place result in r;
return a pointer to r. So r = a + s*(b - a).

double* VxHomoDivide(a, r)
vector a, r;

Do homogeneous divide of vector a by a[3] and store result in vector r with
homogeneous coordinate r[3] ≡ 1. Return a pointer to r.

VxPrint(v)
vector v;

Print vector v.

VxGet(v)
vector v;

Get MX_N parameters from a tty to define vector v.

double* VxCross(a, b, r)
vector a, b, r;

Returns the cross product of a and b in r and returns pointer to r.

VxZero(a)
vector a;

Returns TRUE if each of the first three components of a is 0. (within
MX_EPSILON of 0.), else it returns FALSE. The a[3] element is ignored.

The following routine is the three-vector generalization of the two-vector cross
product. An example of its use is the generation of the vector of the plane which
passes through three given points [BLIN77]. It is in the module VxVector_4.o.

double* VxCross_4(a, b, c, r)

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

18

vector a, b, c, r;
Returns the generalized cross product of a, b, and c in r. (Cf. VxCross()
above.)

Reference
[BLIN77]

James F. Blinn, A Homogeneous Formulation for Lines in 3 Space, Computer
Graphics, Vol 11, No 2, Jul 1977, 237-241 (SIGGRAPH ’77 Proceedings).

Appendix 5: The VuSpec Package
This package supports the view spec outlined in the text and Tech Memo 84.

The view spec is stored in a struct LFL_View defined in VuSpec.h. It similarly
supports the display spec and struct LFL_Display. The source resides in files
VuSpec.h, VuSpec.c, VuDisplay.c, VuMatrix.c, VuClip.c.

#include <MxMatrix.h>
#include <VuSpec.h>
#include <stdio.h>
typedef double MxWorldType;

VuViewInit(vup)
struct LFL_View* vup;

Initialize given view struct to default values defined in struct LFL_View
VuReference which is a perspective view.

VuSetViewPoint(vup, v)
struct LFL_View* vup;
vector v;

Set the viewpoint of the given view structure to the given point in world
space.

VuSetViewNormal(vup, v)
struct LFL_View* vup;
vector v;

Set the view normal of the given view struct to the given vector in world
space.

VuSetViewUp(vup, v)
struct LFL_View* vup;
vector v;

Set the view up of the given view struct to the given vector in world space.
The component of this vector perpendicular to the view normal vector de-
fines the up direction. This routine does not check for the view up vector col-
linear with the view normal.

VuSetViewDistance(vup, d)
struct LFL_View* vup;
MxWorldType d;

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

19

Set the distance of the given view struct to the given distance, which is the
distance along the view normal from the view point at which the view plane
lies. The distance is in world space.

VuSetNearFar(vup, near, far)
struct LFL_View* vup;
MxWorldType near, far;

Set the near and far clipping plane distances of the given view struct. The
planes are located at the given distances from the view point along the view
normal. If far is 0., then the far clipping plane is at infinity. The distances are
in world space.

VuSetViewWindow(vup, centeru, centerv, halfsizeu, halfsizev)
struct LFL_View* vup;
MxWorldType centeru, centerv, halfsizeu, halfsizev;

Set the window of the given view struct by specifying the location of its cen-
ter relative the point where the view normal intersects the view plane. The
coordinates are in world space. The horizontal and vertical halfsizes com-
plete the definition. They are also expressed in world space. Coordinate v is
parallel the up vector (not view up) and coordinate u is perpendicular to it,
parallel the right vector which points to the right when looking out the view
normal with the up vector pointing up.

VuSetProjectionType(vup, type)
struct LFL_View* vup;

Set the projection type of the given view struct to either VU_PERSPECTIVE
or VU_ORTHOGRAPHIC (defined in VuSpec.h).

VuSetAspectRatio(vup, aspectratio)
struct LFL_View* vup;
double aspectratio;

Resets WindowHalfsize.v in the given view struct so that the width to height
aspect ratio is as given. WindowHalfsize.u is unchanged, so the field-of-view
angle is unchanged (cf. VuSetFieldOfView() below) when meaningful. Spe-
cial aspect ratios VU_SILENT, VU_VIDEO, VU_ACADEMY,
VU_PANAVISION, VU_CINEMASCOPE, VU_TODDAO,
VU_SUPERPANAVISION, VU_ULTRAPANAVISION, VU_IMAX, and
VU_OMNIMAX are defined in VuSpec.h.

VuSetFieldOfView(vup, angle)
struct LFL_View* vup;
double angle;

Resets WindowHalfsize.u in the given view struct so that the full horizontal
field-of-view angle is angle degrees. WindowHalfsize.v is also reset to main-
tain aspect ratio. ViewDistance is unchanged. N.B. Field of view for off-axis

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

20

view windows is invalid. (Cf. VuSetAspectRatio() above.) The routine re-
turns a 0 normally but a –1 in case WindowHalfsize.u is 0.

VuGetViewPoint(vup, v)
struct LFL_View* vup;
vector v;

Returns the view point from the given view struct. v[3] is set to 1.

VuGetViewNormal(vup, v)
struct LFL_View* vup;
vector v;

Returns the view normal from the given view struct. v[3] is set to 1.

VuGetViewUp(vup, v)
struct LFL_View* vup;
vector v;

Returns the view up from the given view struct. v[3] is set to 1. This routine
does not check for view up vector collinear with the view normal.

VuGetUnitNormal(vup, n)
struct LFL_View* vup;
vector n;

Returns the unit vector in the viewing direction of the given view struct. n[3]
is set to 1.

VuGetUnitUp(vup, v)
struct LFL_View* vup;
vector v;

Returns the unit vector in the up direction of the given view struct. This is
the normalized component of the view up vector orthogonal to the view
normal and in the plane defined by the up and normal vectors. v[3] is set to
1. This routine checks for view up collinear with view normal. If collinear, v
is set arbitrarily to be orthogonal to view normal, an error message is printed
(if VuPrintError is TRUE), and –1 is returned instead of the normal 0. The
view struct is not changed.

VuGetUnitRight(vup, u)
struct LFL_View* vup;
vector u;

Returns the unit vector towards the right for the given view struct. This is the
unit vector orthogonal to the unit up and unit normal vectors defined above,
by the lefthand rule. u[3] is set to 1. This routine checks for view up collinear
with view normal. If collinear, an arbitrary view up orthogonal to view nor-
mal is used to compute u, an error message is printed (if VuPrintError is
TRUE), and –1 is returned instead of the normal 0. The view struct is not
changed.

MxWorldType VuGetViewDistance(vup)

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

21

struct LFL_View* vup;
Returns the view distance of the given view struct.

VuGetNearFar(vup, nearp, farp)
struct LFL_View* vup;
MxWorldType *nearp, *farp;

Returns the near distance and far distance of the given view struct.

double VuGetAspectRatio(vup)
struct LFL_View* vup;

Returns the aspect ratio of the viewing window defined in the given view
struct. It is defined as WindowHalfsize.u / WindowHalfsize.v. An error return of
–1. occurs for a WindowHalfsize.v of 0.

double VuGetFieldOfView(vup)
struct LFL_View* vup;

Returns the full horizontal field-of-view angle (in degrees) associated with
the given view struct. It is computed as 2 * atan(WindowHalfsize.u / ViewDis-
tance). This angle is valid only for centered view windows.

VuGetViewWindow(vup, centerup, centervp, halfsizeup, halfsizevp)
struct LFL_View* vup;
MxWorldType *centerup, *centervp, *halfsizeup, *halfsizevp;

Returns the view window description from the given view struct.

VuGetProjectionType(vup)
struct LFL_View* vup;

Returns the projection type of the given view struct (VU_PERSPECTIVE or
VU_ORTHOGRAPHIC, defined in VuSpec.h).

VuViewPrint(vup)
struct LFL_View* vup;

Print an ascii version of the given view struct on stdout.

VuFileViewPrint(file, vup)
FILE* file;
struct LFL_View* vup;

Print an ascii version of the given view struct to the given file. This is the
conventional way of passing viewing definitions between programs (cf.
VuFileViewScan() below).

VuMiscPrint(vup)
struct LFL_View* vup;

Print an ascii version of miscellaneous derived parameters from the given
view struct on stdout. These parameters are field-of-view angle, view win-
dow aspect ratio, and the azimuth, pitch, and roll of the given view (cf.
VuGetAspectRatio(), VuGetFieldOfView(), and VuGetViewAngles()).

VuFileMiscPrint(file, vup)

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

22

FILE* file;
struct LFL_View* vup;

Print an ascii version of miscellaneous derived parameters from the given
view struct to the given file. See VuMiscPrint() above.

VuViewScan(vup)
struct LFL_View* vup;

Scan an ascii version of a viewing definition into the given view struct from
stdin.

VuFileViewScan(file, vup)
FILE* file;
struct LFL_View* vup;

Scan an ascii version of a viewing definition into the given view struct from
the given file. This is the conventional way of passing viewing definitions be-
tween programs (cf. VuFileViewPrint() above).

VuStackInit(vup)
struct LFL_View* vup;

Initialize the view stack.

char* VuPush(vup)
struct LFL_View* vup;

Push the given view struct onto the view stack. Normal return is NULL.
There is an error message returned in case of stack overflow. The length of
the stack VU_STKLEN is defined in VuSpec.h.

char* VuPop(vup)
struct LFL_View* vup;

Pop the view stack into the given view struct. Normal return is NULL. There
is an error message returned in case of stack underflow.

VuPerspNormalization(vup, m)
struct LFL_View* vup;
matrix m;

The perspective normalization matrix (N in Tech Memo 84) is derived from
the given view struct and returned in matrix m. An error return of –1 occurs
for collinear ViewUp and ViewNormal (see VuGetUVN() below for full ex-
planation and the actions taken) else 0 is returned. The special case of far
plane at infinity is handled as explained in Tech Memo 84. A ViewDistance
of zero is an error in this case and causes a –1 return.

VuOrthoNormalization(vup, m)
struct LFL_View* vup;
matrix m;

The orthographic normalization matrix (No in Tech Memo 84) is derived
from the given view struct and returned in matrix m. An error return of –1
occurs for collinear ViewUp and ViewNormal (see VuGetUVN() below for

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

23

full explanation and the actions taken) else 0 is returned. FarDisance equal
NearDistance causes an error return also. The special case of far plane at in-
finity is handled as explained in Tech Memo 84. A ViewDistance of zero is an
error in this case and causes a –1 return.

VuPerspTransformation(vup, m)
struct LFL_View* vup;
matrix m;

The perspective transformation matrix (P in Tech Memo 84) is derived from
the given view struct and returned in matrix m. The special case of far plane
at infinity is handled as explained in Tech Memo 84. A –1 is returned in case
ViewDistance is 0 and an error message is printed (suppressed if VuPrintEr-
ror is set to FALSE); normal return is 0. FarDisance equal NearDistance caus-
es an error return also.

VuPerspProjection(vup, m)
struct LFL_View* vup;
matrix m;

The perspective projection matrix (Q in Tech Memo 84) is derived from the
given view struct and returned in matrix m. The special case of far plane at
infinity is handled as explained in Tech Memo 84. A –1 is returned in case
ViewDistance is 0 and an error message is printed (suppressed if VuPrintEr-
ror is set to FALSE); normal return is 0.

VuCollinear(vup, up)
struct LFL_View* vup;
vector up;

Checks the given view struct to see if the view up vector is collinear with the
view normal vector. It returns TRUE in case of collinearity and FALSE oth-
erwise. In either case, up contains a vector orthogonal to the view normal
upon return. In case of collinearity, this vector is arbitrarily chosen. Other-
wise, it is just the view up vector. The view struct is not changed.

VuGetUVN(vup, u, v, n)
struct LFL_View* vup;
vector u, v, n;

Computes the three orthogonal unit vectors defining the view space de-
scribed in the given view struct. (The first three elements of each vector is a
unit vector; the fourth element is arbitrarily set to 1. for all three vectors.) n is
the unit normal obtained from ViewNormal. v is the unit up vector obtained
from ViewUp as defined in Tech Memo 84. The ViewUp vector is not neces-
sarily perpendicular to n so v is that component which is. Then u, the unit
right vector, is obtained by cross product to be orthogonal to v and n and
forms a lefthanded coordinate system with them. If the ViewUp vector hap-
pens to be collinear with the ViewNormal vector, an error message is print-
ed, v is made arbitrarily orthogonal to n (it may be meaningless however),

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

24

and a –1 is returned. Normal return is a 0. The view struct is not changed.
The error message may be suppressed by setting VuPrintError to FALSE.

Following are several convenient interfaces to the view spec. They follow closely
routines by similar names written by Bill Reeves in an earlier package.

VuSetViewFromAngles(vup, azimuth, pitch, roll)
struct LFL_View* vup;
double azimuth, pitch, roll;

ViewNormal and ViewUp of the given view are determined from angles az-
imuth, pitch, and roll as defined in VuView() below.

VuGetAnglesFromView(vup, azimuthp, pitchp, rollp)
struct LFL_View* vup;
double *azimuthp, *pitchp, *rollp;

The inverse of VuSetViewFromAngles() above. Angles returned are not
necessarily those used to generate the view. For example, 480 degrees would
be returned as 120, and a roll of 200 degrees would be returned as –160. A
collinearity check is made identical in action to VuGetUnitRight() above.
The view struct is not changed.

VuView(vup, distance, azimuth, pitch, roll)
struct LFL_View* vup;
double distance, azimuth, pitch, roll;

Defines the location of the ViewPoint by giving its distance from the world
space origin along a radius vector at angle azimuth degrees in the xy plane,
measured positive by the lefthand rule on the z axis, and at angle pitch de-
grees from the xy plane, measured positive above the xy plane (positive z di-
rection) and negative below. Azimuth is measured relative the positive y ax-
is. The vector from the origin to this point defines the ViewNormal. ViewUp
is derived from the angle roll measured about the ViewNormal using the
lefthand rule. Roll equal 0 degrees implies the rightward view vector is par-
allel the xy plane with the z component of ViewUp positive. ViewUp is al-
ways set perpendicular to ViewNormal by this routine which may be used
with VuWindow() or VuPerspective() to completely fill a view struct. Alter-
natively, VuFullView(), VuLookAt(), or VuCamera() may be used in its
place.

VuFullView(vup, V, azimuth, pitch, roll)
struct LFL_View* vup;
vector V;
double azimuth, pitch, roll;

The ViewPoint is placed at the location specified by vector V in world space.
The ViewNormal is located as described above with the angles azimuth and
pitch, but they are measured relative a coordinate system centered at the

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

25

ViewPoint which is just a simple translation of the world space system.
ViewUp is determined as above from the roll angle.

VuLookAt(vup, V, p, roll)
struct LFL_View* vup;
vector V, p;
double roll;

Locates the ViewPoint at Vx Vy Vz 1 . The ViewNormal direction is that
defined by a vector from ViewPoint to px py pz 1 . Roll is interpreted as
above. In particular, ViewUp is always set perpendicular to ViewNormal.

This routine does not supply sufficient data for computing a unique view
when p V− is parallel the z axis. In this case, ViewUp can be anything so this
routine sets it to 0 1 0− if the z component of ViewNormal is positive or
to 0 1 0 if negative, prints an error message, and returns –1 (0 is the
normal return). The view struct is changed to hold the altered view up. The
error message may be suppressed by setting VuPrintError to FALSE.

VuCamera(vup, r, n, up, deye)
struct LFL_View* vup;
vector r, n, up;
MxWorldType deye;

The point xr yr zr 1 is any convenient reference point. The vector
xn yn zn 1 defines the ViewNormal. The vector xup yup zup 1 de-

fines ViewUp. In this case ViewUp is not necessarily perpendicular to
ViewNormal, as permitted by the view spec. A collinearity check is made
and the view up portion of the view struct is changed to be arbitrarily or-
thogonal to the view normal in case of collinearity. A return of –1 (rather
than the normal 0) occurs in this case. An error message is printed in this
case unless VuPrintError is set to FALSE. The ViewPoint is located distance
deye from the reference point along and in the direction of the ViewNormal.

This routine is more powerful and computationally cheaper than either of
the preceding two routines.

VuPerspective(vup, fieldofview, aspectratio, near, far)
struct LFL_View* vup;
double fieldofview, aspectratio;
MxWorldType near, far;

Sets the WindowCenter, WindowHalfsize, NearDistance, and FarDistance of
the given view struct. FarDistance of 0 represents a far clipping plane at in-
finity. A view window specified with this routine is assumed to be centered
on this ViewNormal. The view plane and the near clipping plane are as-
sumed to be the same in this routine—i.e., NearDistance equals ViewDis-
tance. The fieldofview argument is the full horizontal field-of-view angle in

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

26

degrees for the desired viewing window. aspectratio is the desired width-to-
height aspect ratio for it. If the window is subsequently moved off center, it
remains the same size and shape but the field-of-view angle is no longer ac-
curate.

VuWindow(vup, wleft, wright, wtop, wbottom, near, far)
struct LFL_View* vup;
MxWorldType wleft, wright, wtop, wbottom, near, far;

Sets the WindowCenter, WindowHalfsize, NearDistance, and FarDistance of
the given view struct. FarDistance of 0 represents a far clipping plane at in-
finity. A view window specified by this routine does not have to be centered
on the ViewNormal. The view plane and the near clipping plane are as-
sumed to be the same in this routine—i.e., NearDistance equals ViewDis-
tance.

The following routines generate the matrices used in Tech Memo 84:

VuGet[ABCDEFGHNPQR](vup, m)
struct LFL_View* vup;
matrix m;

This notation stands for the routines VuGetA(), VuGetB(), etc. Each routine
returns in m the matrix of the corresponding name from Tech Memo 84.
Thus, for example, VuGetA() returns matrix A. This set of routines returns
those matrices dependent on a view structure. VuGetN() is the same as
VuPerspNormalization(); VuGetP() is the same as VuPerspTransfor-
mation(); and VuGetQ() is the same as VuPerspProjection(). In all cases af-
fected by the far plane at infinity, appropriate action is taken as explained in
Tech Memo 84.

VuGet[JKLMS](disp, m)
struct LFL_Display* disp;
matrix m;

Another class of routines like that above for generating the matrices men-
tioned in Tech Memo 84. In this case, however, the matrices are those de-
pendent on a display structure—i.e., those used for generating a screen
mapping.

VuGetNsubL(vup, m)
struct LFL_View* vup;
matrix m;

Generates the matrix N ABL = of Tech Memo 84. This is the part of the per-
spective normalization which changes as the camera moves. The camera is
otherwise rigid—i.e., its viewing frustum is rigid, only its position and orien-
tation change. An error return of –1 occurs for collinear ViewUp and
ViewNormal (see VuGetUVN() above for full explanation and the actions
taken) else 0 is returned.

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

27

VuGetNsubR(vup, m)
struct LFL_View* vup;
matrix m;

The complement of the preceding routine, this generates matrix N CDR = of
Tech Memo 84. This is the part of the perspective normalization which is
fixed for a rigid, but moving camera.

VuGetNsuboR(vup, m)
struct LFL_View* vup;
matrix m;

Same as above but for orthographic normalization. The matrix generated is
NoR of Tech Memo 84.

VuGetJsubr(disp, m)
struct LFL_Display* disp;
matrix m;

Generates matrix Jr of Tech Memo 84. This matrix is the coordinate trans-
formation part of the screen mapping specialized for raster devices.

VuGetJsubc(disp, m)
struct LFL_Display* disp;
matrix m;

Generates matrix Jc of Tech Memo 84. This matrix is the coordinate trans-
formation part of the screen mapping specialized for calligraphic devices.

VuGetNsubo(vup, m)
struct LFL_View* vup;
matrix m;

Similar to VuGetN() but for orthographic normalization. This routine is the
same as VuOrthoNormalization(). An error return of –1 occurs for collinear
ViewUp and ViewNormal (see VuGetUVN() above for full explanation and
the actions taken) else 0 is returned.

VuGetSsubr(disp, m)
struct LFL_Display* disp;
matrix m;

Generates the raster screen mapping Sr of Tech Memo 84. The same as
VuRasterMap().

VuGetSsubc(disp, m)
struct LFL_Display* disp;
matrix m;

Generates the calligraphic screen mapping Sc of Tech Memo 84. The same as
VuCalligraphicMap().

The following routines are devoted to the screen mapping part of the view trans-
formation.

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

28

VuRasterInit(disp)
struct LFL_Display* disp;

Initializes the given display to the default raster values defined in struct
LFL_Display VuRasterDisplay.

VuCalligraphicInit(disp)
struct LFL_Display* disp;

Initializes the given display to the default calligraphic values defined in
struct LFL_Display VuCalligraphicDisplay.

VuGetScreenMin(disp, v)
struct LFL_Display* disp;
vector v;

Returns X min , Ymin , and Zmin of the current window in the given display (as
opposed to the full screen window).

VuGetScreenMax(disp, v)
struct LFL_Display* disp;
vector v;

Returns X max , Ymax , and Zmax of the current window in the given display (as
opposed to the full screen window).

VuGetScreenWindow(disp, xminp, xmaxp, yminp, ymaxp, zminp, zmaxp)
struct LFL_Display* disp;
double *xminp, *xmaxp, *yminp, *ymaxp, *zminp, *zmaxp;

A non-vector form of the two preceding routines.

VuGetFullScreenMin(disp, v)
struct LFL_Display* disp;
vector v;

Returns X min , Ymin , and Zmin of the full screen display window. Although the
current display window may vary, the full screen window is fixed for a giv-
en device.

VuGetFullScreenMax(disp, v)
struct LFL_Display* disp;
vector v;

Returns X max , Ymax , and Zmax of the full screen display window.

VuGetFullScreenWindow(disp, xminp, xmaxp, yminp, ymaxp, zminp, zmaxp)
struct LFL_Display* disp;
double *xminp, *xmaxp, *yminp, *ymaxp, *zminp, *zmaxp;

A non-vector form of the two preceding routines.

double VuGetFullScreenAspectRatio(disp)
struct LFL_Display* disp;

Returns the width to height of the full screen window. This is fixed for any
given device (unless it is physically altered).

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

29

double VuGetPixelAspectRatio(disp)
struct LFL_Display* disp;

Derives and returns the pixel [spacing] aspect ratio of the given device. This
is a measure of the nonsquareness of a device. This is fixed for any given de-
vice (unless it is physically altered). It is determined by the formula Pixe-
lAspectRatio = FullScreenAspectRatio * VResolution / HResolution. VResolution
and HResolution can be determined from FullScreenMin and FullScreenMax.

VuGetScreenNormal(disp, n)
struct LFL_Display* disp;
vector n;

Returns the ScreenNormal in Normalized Device Coordinates (NDC). This is
assumed to be a unit vector (disregarding n[3]). n[3] is set to 1.

VuGetScreenUp(disp, v)
struct LFL_Display* disp;
vector v;

Returns the ScreenUp in NDC. This is assumed to be a unit vector (disre-
garding v[3]). v[3] is set to 1.

VuGetScreenRight(disp, u)
struct LFL_Display* disp;
vector u;

Returns the screen right vector in NDC. This is assumed to be 1 0 0 1
for all devices.

VuRasterMap(disp, m)
struct LFL_Display* disp;
matrix m;

Generates the raster screen mapping Sr of Tech Memo 84. The same as
VuGetSsubr().

VuCalligraphicMap(disp, m)
struct LFL_Display* disp;
matrix m;

Generates the calligraphic screen mapping Sc of Tech Memo 84. The same as
VuGetSsubc().

VuDisplayPrint(disp)
struct LFL_Display* disp;

Print an ascii version of the given display struct on stdout.

VuFileDisplayPrint(file, disp)
FILE* file;
struct LFL_Display* disp;

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

30

Print an ascii version of the given display struct to the given file. This is the
conventional way of passing display definitions between programs (cf.
VuFileDisplayScan() below).

VuMiscDisplayPrint(disp)
struct LFL_Display* disp;

Print an ascii version of miscellaneous derived parameters of the given dis-
play struct. In particular, the pixel [spacing] aspect ratio is derived and
printed.

VuDisplayScan(disp)
struct LFL_Display* disp;

Scan an ascii version of a display definition into the given display struct from
stdin.

VuFileDisplayScan(file, disp)
FILE* file;
struct LFL_Display* disp;

Scan an ascii version of a display definition into the given display struct from
the given file. This is the conventional way of passing display definitions be-
tween programs (cf. VuFileDisplayPrint() above).

VuSetScreenMin(disp, v)
struct LFL_Display* disp;
vector v;

Set ScreenMin of the given display struct to the given values. v[3] is ignored.

VuSetScreenMax(disp, v)
struct LFL_Display* disp;
vector v;

Set ScreenMax of the given display struct to the given values. v[3] is ignored.

VuSetScreenWindow(disp, xmin, xmax, ymin, ymax, zmin, zmax)
struct LFL_Display* disp;
double xmin, xmax, ymin, ymax, zmin, zmax;

A non-vector form of the two routines above.

VuSetScreenWindow2D(disp, aspectratio, xmin, ymin, pixelwidth,pixelheight)
struct LFL_Display* disp;
double aspectratio, xmin, ymin, pixelwidth, pixelheight;

The screen window of the display described by the given display structure is
set to have the given aspectratio which is assumed to be the aspect ratio of a
view window meant to be mapped to the specified display window. The
corner of the desired window is pegged at (xmin, xmax). It is scaled to have
either width pixelwidth or height pixelheight, but not both. So one of the ar-
guments, but not both, should be 0. An error message is printed otherwise
and a –1 is returned; 0 is the normal return. The error message may be sup-
pressed by setting VuPrintError to FALSE. The z component of the screen

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

31

mapping is not affected by this routine and must be set separately. No checks
for invalid windows are made.

VuSetFullScreenMin(disp, v)
struct LFL_Display* disp;
vector v;

Set FullScreenMin of the given display struct to the given values. v[3] is ig-
nored.

VuSetFullScreenMax(disp, v)
struct LFL_Display* disp;
vector v;

Set FullScreenMax of the given display struct to the given values. v[3] is ig-
nored.

VuSetFullScreenWindow(disp, xmin, xmax, ymin, ymax, zmin, zmax)
struct LFL_Display* disp;
double xmin, xmax, ymin, ymax, zmin, zmax;

A non-vector form of the two routines above.

VuSetFullScreenAspectRatio(disp, screenaspectratio)
struct LFL_Display* disp;
double screenaspectratio;

Set the FullScreenAspectRatio of the given display struct to the given value.

VuSetScreenNormal(disp, v)
struct LFL_Display* disp;
vector v;

Set ScreenNormal of the given display struct to the given vector normalized.
It is the user’s responsibility to make ScreenNormal orthogonal to ScreenUp.

VuSetScreenUp(disp, v)
struct LFL_Display* disp;
vector v;

Set ScreenUp of the given display struct to the given vector normalized. It is
the user’s responsibility to make ScreenUp orthogonal to ScreenNormal.

Following are routines for clipping points and lines against canonical viewing
volumes after perspective or orthographic normalization:

double VuGetCVFzmin(vup)
struct LFL_View* vup;

Returns the minimum z coordinate of the canonical viewing frustum (CVF)
corresponding to the assumed perspective view given.

VuFastPerspClipPoint(vup, p, zmin)
struct LFL_View* vup;
vector p;
double zmin;

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

32

A fast version of VuPerspClipPoint() described below. It is faster because
zmin is provided (perhaps computed with VuGetCVFzmin() above). Since
zmin changes only when near, far, or view plane distances change, it does not
need to be recomputed for every clip.

VuPerspClipPoint(vup, p)
struct LFL_View* vup;
vector p;

Clips the given point p against the canonical viewing frustum corresponding
to the given perspective view. The routine returns the Cohen-Sutherland
outcode which has six bits called VU_ABOVE, VU_BELOW, VU_RIGHT,
VU_LEFT, VU_BEHIND, or VU_BEFORE (defined in VuSpec.h). If none of
these bits is set (i.e., outcode is 0), then the point is inside the viewing vol-
ume. The special case of far plane at infinity is handled.

VuOrthoClipPoint(vup, p)
struct LFL_View* vup;
vector p;

Clips the given point p against the canonical viewing volume for orthograph-
ic views. The routine returns the Cohen-Sutherland outcode which has six
bits called VU_ABOVE, VU_BELOW, VU_RIGHT, VU_LEFT, VU_BEHIND,
or VU_BEFORE (defined in VuSpec.h). If none of these bits is set (i.e., out-
code is 0), then the point is inside the viewing volume. The special case of far
plane at infinity is handled.

VuFastPerspClipLine(vup, p, q, nup, nuq, zmin)
struct LFL_View* vup;
vector p, q, nup, nuq;
double zmin;

This routine is to VuPerspClipLine() below as VuFastPerspClipPoint() is to
VuPerspClipPoint() above.

VuPerspClipLine(vup, p, q, nup, nuq)
struct LFL_View* vup;
vector p, q, nup, nuq;

Returns VU_REJECT (defined in VuSpec.h) if the line segment from point p
to point q is entirely outside the canonical viewing frustum corresponding to
the given perspective view. Otherwise it returns VU_ACCEPT and places the
clipped line segment endpoints in nup and nuq (which are undefined for case
VU_REJECT). p and q are not touched.

VuOrthoClipLine(vup, p, q, nup, nuq)
struct LFL_View* vup;
vector p, q, nup, nuq;

Returns VU_REJECT (defined in VuSpec.h) if the line segment from point p
to point q is entirely outside the canonical viewing volume for orthographic

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

33

views. Otherwise it returns VU_ACCEPT and places the clipped line seg-
ment endpoints in nup and nuq (which are undefined for case VU_REJECT).
p and q are not touched.

Appendix 6: The CvuSpec Package
This package is the VuSpec package (Appendix 5) specialized for the notion

of “current view” Cvu and “current display” CurrentDisplay. These are defined in
VuSpec.h. The source resides in files VuSpec.h, CvuSpec.c, CvuDisplay.c, CvuMa-
trix.c, CvuClip.c.

#include <MxMatrix.h>
#include <VuSpec.h>
#include <stdio.h>
typedef double MxWorldType;

CvuViewInit()
Initialize current view to default values defined in struct LFL_View CvuRefer-
ence which is a perspective view.

CvuSetViewPoint(v)
vector v;

Set the viewpoint of the current view to the given point in world space.

CvuSetViewNormal(v)
vector v;

Set the view normal of the current view to the given vector in world space.

CvuSetViewUp(v)
vector v;

Set the view up of the current view to the given vector in world space. The
component of this vector perpendicular to the view normal vector defines
the up direction. This routine does not check for the view up vector collinear
with the view normal.

CvuSetViewDistance(d)
MxWorldType d;

Set the distance of the current view to the given distance, which is the dis-
tance along the view normal from the view point at which the view plane
lies. The distance is in world space.

CvuSetNearFar(near, far)
MxWorldType near, far;

Set the near and far clipping plane distances of the current view. The planes
are located at the given distances from the view point along the view normal.
If far is 0., then the far clipping plane is at infinity. The distances are in world
space.

CvuSetViewWindow(centeru, centerv, halfsizeu, halfsizev)

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

34

MxWorldType centeru, centerv, halfsizeu, halfsizev;
Set the window of the current view by specifying the location of its center
relative the point where the view normal intersects the view plane. The co-
ordinates are in world space. The horizontal and vertical halfsizes complete
the definition. They are also expressed in world space. Coordinate v is paral-
lel the up vector (not view up) and coordinate u is perpendicular to it, paral-
lel the right vector which points to the right when looking out the view nor-
mal with the up vector pointing up.

CvuSetProjectionType(type)
Set the projection type of the current view to either VU_PERSPECTIVE or
VU_ORTHOGRAPHIC (defined in VuSpec.h).

CvuSetAspectRatio(aspectratio)
double aspectratio;

Resets WindowHalfsize.v in the current view so that the width to height as-
pect ratio is as given. WindowHalfsize.u is unchanged, so the field-of-view
angle is unchanged (cf. CvuSetFieldOfView() below) when meaningful.
Special aspect ratios VU_SILENT, VU_VIDEO, VU_ACADEMY,
VU_PANAVISION, VU_CINEMASCOPE, VU_TODDAO,
VU_SUPERPANAVISION, VU_ULTRAPANAVISION, VU_IMAX, and
VU_OMNIMAX are defined in VuSpec.h.

CvuSetFieldOfView(angle)
double angle;

Resets WindowHalfsize.u in the current view so that the full horizontal field-
of-view angle is angle degrees. WindowHalfsize.v is also reset to maintain
aspect ratio. ViewDistance is unchanged. N.B. Field of view for off-axis view
windows is invalid. (Cf. CvuSetAspectRatio() above.) The routine returns a
0 normally but a –1 in case WindowHalfsize.u is 0.

CvuGetViewPoint(v)
vector v;

Returns the view point from the current view. v[3] is set to 1.

CvuGetViewNormal(v)
vector v;

Returns the view normal from the current view. v[3] is set to 1.

CvuGetViewUp(v)
vector v;

Returns the view up from the current view. v[3] is set to 1. This routine does
not check for view up vector collinear with the view normal.

CvuGetUnitNormal(n)
vector n;

Returns the unit vector in the viewing direction of the current view. n[3] is
set to 1.

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

35

CvuGetUnitUp(v)
vector v;

Returns the unit vector in the up direction of the current view. This is the
normalized component of the view up vector orthogonal to the view normal
and in the plane defined by the up and normal vectors. v[3] is set to 1. This
routine checks for view up collinear with view normal. If collinear, v is set
arbitrarily to be orthogonal to view normal, an error message is printed (if
CvuPrintError is TRUE), and –1 is returned instead of the normal 0. The
view struct is not changed.

CvuGetUnitRight(u)
vector u;

Returns the unit vector towards the right for the current view. This is the
unit vector orthogonal to the unit up and unit normal vectors defined above,
by the lefthand rule. u[3] is set to 1. This routine checks for view up collinear
with view normal. If collinear, an arbitrary view up orthogonal to view nor-
mal is used to compute u, an error message is printed (if CvuPrintError is
TRUE), and –1 is returned instead of the normal 0. The view struct is not
changed.

MxWorldType CvuGetViewDistance()
Returns the view distance of the current view.

CvuGetNearFar(nearp, farp)
MxWorldType *nearp, *farp;

Returns the near distance and far distance of the current view.

double CvuGetAspectRatio()
Returns the aspect ratio of the viewing window defined in the current view.
It is defined as WindowHalfsize.u / WindowHalfsize.v. An error return of –1. oc-
curs for a WindowHalfsize.v of 0.

double CvuGetFieldOfView()
Returns the full horizontal field-of-view angle (in degrees) associated with
the current view. It is computed as 2 * atan(WindowHalfsize.u / ViewDistance).
This angle is valid only for centered view windows.

CvuGetViewWindow(centerup, centervp, halfsizeup, halfsizevp)
MxWorldType *centerup, *centervp, *halfsizeup, *halfsizevp;

Returns the view window description from the current view.

CvuGetProjectionType()
Returns the projection type of the current view (VU_PERSPECTIVE or
VU_ORTHOGRAPHIC, defined in VuSpec.h).

CvuViewPrint()
Print an ascii version of the current view on stdout.

CvuFileViewPrint(file)

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

36

FILE* file;
Print an ascii version of the current view to the given file. This is the conven-
tional way of passing viewing definitions between programs (cf. Cvu-
FileViewScan() below).

CvuMiscPrint()
Print an ascii version of miscellaneous derived parameters from the current
view on stdout. These parameters are field-of-view angle, view window as-
pect ratio, and the azimuth, pitch, and roll of the given view (cf. Cvu-
GetAspectRatio(), CvuGetFieldOfView(), and CvuGetViewAngles()).

CvuFileMiscPrint(file)
FILE* file;

Print an ascii version of miscellaneous derived parameters from the current
view to the given file. See CvuMiscPrint() above.

CvuViewScan()
Scan an ascii version of a viewing definition into the current view from stdin.

CvuFileViewScan(file)
FILE* file;

Scan an ascii version of a viewing definition into the current view from the
given file. This is the conventional way of passing viewing definitions be-
tween programs (cf. CvuFileViewPrint() above).

CvuStackInit()
Initialize the view stack.

char* CvuPush()
Push the current view onto the view stack. Normal return is NULL. There is
an error message returned in case of stack overflow. The length of the stack
VU_STKLEN is defined in VuSpec.h.

char* CvuPop()
Pop the view stack into the current view. Normal return is NULL. There is an
error message returned in case of stack underflow.

CvuPerspNormalization(m)
matrix m;

The perspective normalization matrix (N in Tech Memo 84) is derived from
the current view and returned in matrix m. An error return of –1 occurs for
collinear ViewUp and ViewNormal (see CvuGetUVN() below for full expla-
nation and the actions taken) else 0 is returned. The special case of far plane
at infinity is handled as explained in Tech Memo 84. A ViewDistance of zero
is an error in this case and causes a –1 return.

CvuOrthoNormalization(m)
matrix m;

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

37

The orthographic normalization matrix (No in Tech Memo 84) is derived
from the current view and returned in matrix m. An error return of –1 occurs
for collinear ViewUp and ViewNormal (see CvuGetUVN() below for full ex-
planation and the actions taken) else 0 is returned. FarDisance equal
NearDistance causes an error return also. The special case of far plane at in-
finity is handled as explained in Tech Memo 84. A ViewDistance of zero is an
error in this case and causes a –1 return.

CvuPerspTransformation(m)
matrix m;

The perspective transformation matrix (P in Tech Memo 84) is derived from
the current view and returned in matrix m. The special case of far plane at in-
finity is handled as explained in Tech Memo 84. A –1 is returned in case
ViewDistance is 0 and an error message is printed (suppressed if
CvuPrintError is set to FALSE); normal return is 0. FarDisance equal
NearDistance causes an error return also.

CvuPerspProjection(m)
matrix m;

The perspective projection matrix (Q in Tech Memo 84) is derived from the
current view and returned in matrix m. The special case of far plane at infini-
ty is handled as explained in Tech Memo 84. A –1 is returned in case ViewD-
istance is 0 and an error message is printed (suppressed if CvuPrintError is
set to FALSE); normal return is 0.

CvuCollinear(up)
vector up;

Checks the current view to see if the view up vector is collinear with the
view normal vector. It returns TRUE in case of collinearity and FALSE oth-
erwise. In either case, up contains a vector orthogonal to the view normal
upon return. In case of collinearity, this vector is arbitrarily chosen. Other-
wise, it is just the view up vector. The view struct is not changed.

CvuGetUVN(u, v, n)
vector u, v, n;

Computes the three orthogonal unit vectors defining the view space de-
scribed in the current view. (The first three elements of each vector is a unit
vector; the fourth element is arbitrarily set to 1. for all three vectors.) n is the
unit normal obtained from ViewNormal. v is the unit up vector obtained
from ViewUp as defined in Tech Memo 84. The ViewUp vector is not neces-
sarily perpendicular to n so v is that component which is. Then u, the unit
right vector, is obtained by cross product to be orthogonal to v and n and
forms a lefthanded coordinate system with them. If the ViewUp vector hap-
pens to be collinear with the ViewNormal vector, an error message is print-
ed, v is made arbitrarily orthogonal to n (it may be meaningless however),

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

38

and a –1 is returned. Normal return is a 0. The view struct is not changed.
The error message may be suppressed by setting CvuPrintError to FALSE.

Following are several convenient interfaces to the view spec. They follow closely
routines by similar names written by Bill Reeves in an earlier package.

CvuSetViewFromAngles(azimuth, pitch, roll)
double azimuth, pitch, roll;

ViewNormal and ViewUp of the current view are determined from angles
azimuth, pitch, and roll as defined in CvuView() below.

CvuGetAnglesFromView(azimuthp, pitchp, rollp)
double *azimuthp, *pitchp, *rollp;

The inverse of CvuSetViewFromAngles() above. Angles returned are not
necessarily those used to generate the view. For example, 480 degrees would
be returned as 120, and a roll of 200 degrees would be returned as –160. A
collinearity check is made identical in action to CvuGetUnitRight() above.
The view struct is not changed.

CvuView(distance, azimuth, pitch, roll)
double distance, azimuth, pitch, roll;

Defines the location of the ViewPoint by giving its distance from the world
space origin along a radius vector at angle azimuth degrees in the xy plane,
measured positive by the lefthand rule on the z axis, and at angle pitch de-
grees from the xy plane, measured positive above the xy plane (positive z di-
rection) and negative below. Azimuth is measured relative the positive y ax-
is. The vector from the origin to this point defines the ViewNormal. ViewUp
is derived from the angle roll measured about the ViewNormal using the
lefthand rule. Roll equal 0 degrees implies the rightward view vector is par-
allel the xy plane with the z component of ViewUp positive. ViewUp is al-
ways set perpendicular to ViewNormal by this routine which may be used
with CvuWindow() or CvuPerspective() to completely fill the current view
struct. Alternatively, CvuFullView(), CvuLookAt(), or CvuCamera() may be
used in its place.

CvuFullView(V, azimuth, pitch, roll)
vector V;
double azimuth, pitch, roll;

The ViewPoint is placed at the location specified by vector V in world space.
The ViewNormal is located as described above with the angles azimuth and
pitch, but they are measured relative a coordinate system centered at the
ViewPoint which is just a simple translation of the world space system.
ViewUp is determined as above from the roll angle.

CvuLookAt(V, p, roll)
vector V, p;
double roll;

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

39

Locates the ViewPoint at Vx Vy Vz 1 . The ViewNormal direction is that
defined by a vector from ViewPoint to px py pz 1 . Roll is interpreted as
above. In particular, ViewUp is always set perpendicular to ViewNormal.

This routine does not supply sufficient data for computing a unique view
when p V− is parallel the z axis. In this case, ViewUp can be anything so this
routine sets it to 0 1 0− if the z component of ViewNormal is positive or
to 0 1 0 if negative, prints an error message, and returns –1 (0 is the
normal return). The view struct is changed to hold the altered view up. The
error message may be suppressed by setting CvuPrintError to FALSE.

CvuCamera(r, n, up, deye)
vector r, n, up;
MxWorldType deye;

The point xr yr zr 1 is any convenient reference point. The vector
xn yn zn 1 defines the ViewNormal. The vector xup yup zup 1 de-

fines ViewUp. In this case ViewUp is not necessarily perpendicular to
ViewNormal, as permitted by the view spec. A collinearity check is made
and the view up portion of the current view is changed to be arbitrarily or-
thogonal to the view normal in case of collinearity. A return of –1 (rather
than the normal 0) occurs in this case. An error message is printed in this
case unless CvuPrintError is set to FALSE. The ViewPoint is located distance
deye from the reference point along and in the direction of the ViewNormal.

This routine is more powerful and computationally cheaper than either of
the preceding two routines.

CvuPerspective(fieldofview, aspectratio, near, far)
double fieldofview, aspectratio;
MxWorldType near, far;

Sets the WindowCenter, WindowHalfsize, NearDistance, and FarDistance of
the current view. FarDistance of 0 represents a far clipping plane at infinity.
A view window specified with this routine is assumed to be centered on this
ViewNormal. The view plane and the near clipping plane are assumed to be
the same in this routine—i.e., NearDistance equals ViewDistance. The
fieldofview argument is the full horizontal field-of-view angle in degrees for
the desired viewing window. aspectratio is the desired width-to-height aspect
ratio for it. If the window is subsequently moved off center, it remains the
same size and shape but the field-of-view angle is no longer accurate.

CvuWindow(wleft, wright, wtop, wbottom, near, far)
MxWorldType wleft, wright, wtop, wbottom, near, far;

Sets the WindowCenter, WindowHalfsize, NearDistance, and FarDistance of
the current view. FarDistance of 0 represents a far clipping plane at infinity.
A view window specified by this routine does not have to be centered on the

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

40

ViewNormal. The view plane and the near clipping plane are assumed to be
the same in this routine—i.e., NearDistance equals ViewDistance.

The following routines generate the matrices used in Tech Memo 84:

CvuGet[ABCDEFGHNPQR](m)
matrix m;

This notation stands for the routines CvuGetA(), CvuGetB(), etc. Each rou-
tine returns in m the matrix of the corresponding name from Tech Memo 84.
Thus, for example, CvuGetA() returns matrix A. This set of routines returns
those matrices dependent on the current view structure. CvuGetN() is the
same as CvuPerspNormalization(); CvuGetP() is the same as CvuPer-
spTransformation(); and CvuGetQ() is the same as CvuPerspProjection(). In
all cases affected by the far plane at infinity, appropriate action is taken as
explained in Tech Memo 84.

CvuGet[JKLMS](m)
matrix m;

Another class of routines like that above for generating the matrices men-
tioned in Tech Memo 84. In this case, however, the matrices are those de-
pendent on the current display structure—i.e., those used for generating a
screen mapping.

CvuGetNsubL(m)
matrix m;

Generates the matrix N ABL = of Tech Memo 84. This is the part of the per-
spective normalization which changes as the camera moves. The camera is
otherwise rigid—i.e., its viewing frustum is rigid, only its position and orien-
tation change. An error return of –1 occurs for collinear ViewUp and
ViewNormal (see CvuGetUVN() above for full explanation and the actions
taken) else 0 is returned.

CvuGetNsubR(m)
matrix m;

The complement of the preceding routine, this generates matrix N CDR = of
Tech Memo 84. This is the part of the perspective normalization which is
fixed for a rigid, but moving camera.

CvuGetNsuboR(m)
matrix m;

Same as above but for orthographic normalization. The matrix generated is
NoR of Tech Memo 84.

CvuGetJsubr(m)
matrix m;

Generates matrix Jr of Tech Memo 84. This matrix is the coordinate trans-
formation part of the current screen mapping specialized for raster devices.

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

41

CvuGetJsubc(m)
matrix m;

Generates matrix Jc of Tech Memo 84. This matrix is the coordinate trans-
formation part of the current screen mapping specialized for calligraphic de-
vices.

CvuGetNsubo(m)
matrix m;

Similar to CvuGetN() but for orthographic normalization. This routine is the
same as CvuOrthoNormalization(). An error return of –1 occurs for collinear
ViewUp and ViewNormal (see CvuGetUVN() above for full explanation and
the actions taken) else 0 is returned.

CvuGetSsubr(m)
matrix m;

Generates the raster screen mapping Sr of Tech Memo 84. The same as Cvu-
RasterMap().

CvuGetSsubc(m)
matrix m;

Generates the calligraphic screen mapping Sc of Tech Memo 84. The same as
CvuCalligraphicMap().

The following routines are devoted to the screen mapping part of the view trans-
formation.

CvuRasterInit()
Initializes the current display to the default raster values defined in struct
LFL_Display CvuRasterDisplay.

CvuCalligraphicInit()
Initializes the current display to the default calligraphic values defined in
struct LFL_Display CvuCalligraphicDisplay.

CvuGetScreenMin(v)
vector v;

Returns X min , Ymin , and Zmin of the current window in the current display (as
opposed to the full screen window).

CvuGetScreenMax(v)
vector v;

Returns X max , Ymax , and Zmax of the current window in the current display (as
opposed to the full screen window).

CvuGetScreenWindow(xminp, xmaxp, yminp, ymaxp, zminp, zmaxp)
double *xminp, *xmaxp, *yminp, *ymaxp, *zminp, *zmaxp;

A non-vector form of the two preceding routines.

CvuGetFullScreenMin(v)

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

42

vector v;
Returns X min , Ymin , and Zmin of the full screen display window. Although the
current display window may vary, the full screen window is fixed for a giv-
en device.

CvuGetFullScreenMax(v)
vector v;

Returns X max , Ymax , and Zmax of the full screen display window.

CvuGetFullScreenWindow(xminp, xmaxp, yminp, ymaxp, zminp, zmaxp)
double *xminp, *xmaxp, *yminp, *ymaxp, *zminp, *zmaxp;

A non-vector form of the two preceding routines.

double CvuGetFullScreenAspectRatio()
Returns the width to height of the full screen window. This is fixed for any
given device (unless it is physically altered).

double CvuGetPixelAspectRatio()
Derives and returns the pixel [spacing] aspect ratio of the current display.
This is a measure of the nonsquareness of a device. This is fixed for any giv-
en device (unless it is physically altered). It is determined by the formula Pix-
elAspectRatio = FullScreenAspectRatio * VResolution / HResolution. VResolution
and HResolution can be determined from FullScreenMin and FullScreenMax.

CvuGetScreenNormal(n)
vector n;

Returns the ScreenNormal in Normalized Device Coordinates (NDC). This is
assumed to be a unit vector (disregarding n[3]). n[3] is set to 1.

CvuGetScreenUp(v)
vector v;

Returns the ScreenUp in NDC. This is assumed to be a unit vector (disre-
garding v[3]). v[3] is set to 1.

CvuGetScreenRight(u)
vector u;

Returns the screen right vector in NDC. This is assumed to be 1 0 0 1
for all devices.

CvuRasterMap(m)
matrix m;

Generates the raster screen mapping Sr of Tech Memo 84. The same as
CvuGetSsubr().

CvuCalligraphicMap(m)
matrix m;

Generates the calligraphic screen mapping Sc of Tech Memo 84. The same as
CvuGetSsubc().

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

43

CvuDisplayPrint()
Print an ascii version of the current display on stdout.

CvuFileDisplayPrint(file)
FILE* file;

Print an ascii version of the current display to the given file. This is the con-
ventional way of passing display definitions between programs (cf. Cvu-
FileDisplayScan() below).

CvuMiscDisplayPrint()
Print an ascii version of miscellaneous derived parameters of the current
display. In particular, the pixel [spacing] aspect ratio is derived and printed.

CvuDisplayScan()
Scan an ascii version of a display definition into the current display struct
from stdin.

CvuFileDisplayScan(file)
FILE* file;

Scan an ascii version of a display definition into the current display struct
from the given file. This is the conventional way of passing display defini-
tions between programs (cf. CvuFileDisplayPrint() above).

CvuSetScreenMin(v)
vector v;

Set ScreenMin of the current display to the given values. v[3] is ignored.

CvuSetScreenMax(v)
vector v;

Set ScreenMax of the current display to the given values. v[3] is ignored.

CvuSetScreenWindow(xmin, xmax, ymin, ymax, zmin, zmax)
double xmin, xmax, ymin, ymax, zmin, zmax;

A non-vector form of the two routines above.

CvuSetScreenWindow2D(aspectratio, xmin, ymin, pixelwidth, pixelheight)
double aspectratio, xmin, ymin, pixelwidth, pixelheight;

The screen window of the display described by the current display structure
is set to have the given aspectratio which is assumed to be the aspect ratio of a
view window meant to be mapped to the specified display window. The
corner of the desired window is pegged at (xmin, xmax). It is scaled to have
either width pixelwidth or height pixelheight, but not both. So one of the ar-
guments, but not both, should be 0. An error message is printed otherwise
and a –1 is returned; 0 is the normal return. The error message may be sup-
pressed by setting CvuPrintError to FALSE. The z component of the screen
mapping is not affected by this routine and must be set separately. No checks
for invalid windows are made.

CvuSetFullScreenMin(v)

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

44

vector v;
Set FullScreenMin of the current display to the given values. v[3] is ignored.

CvuSetFullScreenMax(v)
vector v;

Set FullScreenMax of the current display to the given values. v[3] is ignored.

CvuSetFullScreenWindow(xmin, xmax, ymin, ymax, zmin, zmax)
double xmin, xmax, ymin, ymax, zmin, zmax;

A non-vector form of the two routines above.

CvuSetFullScreenAspectRatio(screenaspectratio)
double screenaspectratio;

Set the FullScreenAspectRatio of the current display to the given value.

CvuSetScreenNormal(v)
vector v;

Set ScreenNormal of the current display to the given vector normalized. It is
the user’s responsibility to make ScreenNormal orthogonal to ScreenUp.

CvuSetScreenUp(v)
vector v;

Set ScreenUp of the current display to the given vector normalized. It is the
user’s responsibility to make ScreenUp orthogonal to ScreenNormal.

Following are routines for clipping points and lines against canonical viewing
volumes after perspective or orthographic normalization:

double CvuGetCVFzmin()
Returns the minimum z coordinate of the canonical viewing frustum (CVF)
corresponding to the assumed perspective current view.

CvuFastPerspClipPoint(p, zmin)
vector p;
double zmin;

A fast version of CvuPerspClipPoint() described below. It is faster because
zmin is provided (perhaps computed with CvuGetCVFzmin() above). Since
zmin changes only when near, far, or view plane distances change, it does not
need to be recomputed for every clip.

CvuPerspClipPoint(p)
vector p;

Clips the given point p against the canonical viewing frustum corresponding
to the current perspective view. The routine returns the Cohen-Sutherland
outcode which has six bits called VU_ABOVE, VU_BELOW, VU_RIGHT,
VU_LEFT, VU_BEHIND, or VU_BEFORE (defined in VuSpec.h). If none of
these bits is set (i.e., outcode is 0), then the point is inside the viewing vol-
ume. The special case of far plane at infinity is handled.

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

45

CvuOrthoClipPoint(p)
vector p;

Clips the given point p against the canonical viewing volume for the current
orthographic view. The routine returns the Cohen-Sutherland outcode which
has six bits called VU_ABOVE, VU_BELOW, VU_RIGHT, VU_LEFT,
VU_BEHIND, or VU_BEFORE (defined in VuSpec.h). If none of these bits is
set (i.e., outcode is 0), then the point is inside the viewing volume. The spe-
cial case of far plane at infinity is handled.

CvuFastPerspClipLine(p, q, nup, nuq, zmin)
vector p, q, nup, nuq;
double zmin;

This routine is to CvuPerspClipLine() below as CvuFastPerspClipPoint() is
to CvuPerspClipPoint() above.

CvuPerspClipLine(p, q, nup, nuq)
vector p, q, nup, nuq;

Returns VU_REJECT (defined in VuSpec.h) if the line segment from point p
to point q is entirely outside the canonical viewing frustum corresponding to
the current perspective view. Otherwise it returns VU_ACCEPT and places
the clipped line segment endpoints in nup and nuq (which are undefined for
case VU_REJECT). p and q are not touched.

CvuOrthoClipLine(p, q, nup, nuq)
vector p, q, nup, nuq;

Returns VU_REJECT (defined in VuSpec.h) if the line segment from point p
to point q is entirely outside the canonical viewing volume for the current or-
thographic view. Otherwise it returns VU_ACCEPT and places the clipped
line segment endpoints in nup and nuq (which are undefined for case
VU_REJECT). p and q are not touched.

Appendix 7: The aa_view, aa_display, and aa_vutrix Packages
Following are the help messages for the aa_view, aa_display, and aa_vutrix in-

terfaces (in the aarg.i style) to the CvuSpec view and display specification pack-
age. The source resides in files viewaarg.h, aa_view.c, displayaarg.h, aa_display.c,
vutrixaarg.h, aa_vutrix.c.

For aa_view:

[-vuinit] Initialize current view to default
[-vupop] Pop view stack into current view
[-vupush] Push current view onto view stack
[-vustkinit] Initialize view stack
[-vuprint] Print current view
[-vuwrite %s] Write current view into given file
[-vuread %s] Read current view from given file
[-vuverbose [%c]] Verbose view switch (arg=[TFtf]) [default=F]

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

46

[-vupoint %F %F %F] Set view point (world space)
[-vunorm %F %F %F] Set view normal (world space)
[-vuup %F %F %F] Set view up (world space)
[-vudist %F] Set view distance (world space)
[-nearfar %F %F] Set near and far distances (far=0 means infinity)
[-vuwin %F %F %F %F] Set view window: center (u, v), halfsize (u, v)
[-vutype %c] ‘p’=PERSPECTIVE, ‘o’=ORTHOGRAPHIC
[-fov %F] Set full horizontal field-of-view angle (degrees)
[-aspect %F [%F]] Set width-to-height aspect ratio (2 args => w h)
[-view %F %F %F %F] Set view: distance azimuth pitch roll (degrees)
[-fullview %F%F%F %F %F
%F]

Set view: viewpoint azimuth pitch roll (degrees)

[-lookat %F%F%F %F%F%F
%F]

Set view: ViewPoint(xyz) LookAtPoint(xyz) roll
(degrees)

[-camera %F%F%F %F%F%F
%F%F%F %F]

Set view: Reference(xyz) Normal(xyz) Up(xyz)
deye

[-perspective %F %F %F %F] Set view window: fovx aspectratio near far
[-window %F%F%F%F%F%F] Set view window: left right top bottom near far

For aa_display:

[-raster] Set current display to raster type
[-stroke] Set current display to calligraphic type
[-disprint] Print current display
[-screenverbose [%c]] Verbose screen switch (arg=[TFtf]) [default F]
[-screen %F %F %F %F [%F
%F]]

Set current screen window: xmin xmax ymin
ymax [zmin zmax]

[-screen2D %F %F %F %F
[%F]]

Set current screen window: aspect xmin ymin
pixelw pixelh. One of pixelw pixelh must be 0.

[-fullscreen %F %F %F %F
[%F%F]]

Set full screen window: xmin xmax ymin ymax
[zmin zmax]

[-fullaspect %F [%F]] Set full screen aspect ratio (2 args => w h)
[-dispnorm %F %F %F] Set screen normal
[-dispup %F %F %F] Set screen up

For aa_vutrix:

[-A] Get matrix A (Tech Memo 84)
[-B] Get matrix B (Tech Memo 84)
[-C] Get matrix C (Tech Memo 84)
[-D] Get matrix D (Tech Memo 84)
[-E] Get matrix E (Tech Memo 84)
[-F] Get matrix F (Tech Memo 84)
[-G] Get matrix G (Tech Memo 84)
[-H] Get matrix H (Tech Memo 84)

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

47

[-J] Get matrix J (Tech Memo 84)
[-K] Get matrix K (Tech Memo 84)
[-L] Get matrix L (Tech Memo 84)
[-M] Get matrix M (Tech Memo 84)
[-N] Get matrix N (Tech Memo 84)
[-P] Get matrix P (Tech Memo 84)
[-Q] Get matrix Q (Tech Memo 84)
[-R] Get matrix R (Tech Memo 84)
[-S] Get matrix S (Tech Memo 84)
[-NsubL] Get matrix NsubL (Tech Memo 84)
[-NsubR] Get matrix NsubR (Tech Memo 84)
[-NsuboR] Get matrix NsuboR (Tech Memo 84)
[-Jsubr] Get matrix Jsubr (Tech Memo 84)
[-Jsubc] Get matrix Jsubc (Tech Memo 84)
[-Nsubo] Get matrix Nsubo (Tech Memo 84)
[-Ssubr] Get matrix Ssubr (Tech Memo 84)
[-Ssubc] Get matrix Ssubc (Tech Memo 84)

Appendix 8: The mx Matrix Desk Calculator
The program mx is basically a driver for the aa_mx package described below

and also the aa_matrix, aa_view, aa_display, aa_vutrix packages. It is intended to
exercise the full matrix/view set of packages: MxMatrix, CmxMatrix, VxVector,
and CvuSpec. Following are the help messages for the aa_mx package and the mx
program. The corresponding source files are mxaarg.h, aa_mx.c, and mx.c. A set of
52 matrix registers and 52 vector registers is assumed, with alphabetic names,
upper and lower case. An implied matrix is the current matrix Cmx and an im-
plied vector is the current vector Cvx.

For aa_mx:

[-i [%c]] Set matrix to identity
[-m %c] Set matrix to current transform
[-mget [%c]] Set matrix from keyboard
[-v %c [%F %F %F [%F]]] Set vector to given value
[-vget [%c]] Set vector from keyboard
[-len [%c]] Get 3-D length of normalized vector
[-len4 [%c]] Get 4-D length of vector
[-normalize [%c]] Normalize 3-D vector
[-normalize4 [%c]] Normalize 4-D vector
[-det [%c]] Get determinant of matrix
[-mxm %c [%c]] Multiply a matrix times a matrix
[-vxm %c [%c]] Multiply a vector times a matrix
[-vxv %c [%c]] Multiply a column vector times a row vector
[-sxm %F [%c]] Multiply a scalar times a matrix
[-sxv %F [%c]] Multiply a scalar times a vector

Matrix Conventions Revisited

Lucasfilm Tech Memo 64

48

[-dot %c [%c]] Form dot product of two 3-D vectors
[-dot4 %c [%c]] Form dot product of two 4-D vectors
[-cross %c [%c]] Form cross product of two 3-D vectors
[-cross4 %c [%c]] Form cross product of two 4-D vectors
[-add %c [%c]] Add a matrix to a matrix
[-sub %c [%c]] Subtract matrix2 from matrix1
[-div %c [%c]] Divide matrix by matrix
[-rdiv %c [%c]] The other divide
[-cp %c [%c]] Copy matrix to matrix
[-vadd %c [%c]] Add a vector to a vector
[-vsub %c [%c]] Subtract vector2 from vector1
[-hdiv [%c]] Do homogeneous divide on vector
[-xf [%c [%c]]] Transform vector by a matrix
[-vcp %c [%c]] Copy vector to vector
[-xpose [%c]] Transpose matrix
[-neg [%c]] Negate matrix
[-vneg [%c]] Negate vector
[-inv [%c]] Invert matrix
[-mp [%c]] Print matrix
[-vp [%c]] Print vector

For mx:

[-mxinit] Initialize world
[-op [%d<1,14>]] Change output precision [14 digits default]
[-do [%c]] Do full mapping pNPS (Tech Memo 84)
[-Do [%c]] Do shortcut mapping pNQRS (Tech Memo 84)
[-line %c [%c]] Do full mapping pNPS on given line segment
[-q] Another quit command

plus the aa_mx, aa_matrix, aa_view, aa_display, and aa_vutrix package commands.

