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INTRODUCTION 
This note is to be considered an extension of Digital Filtering Tutorial for Com-

puter Graphics [1]. As mentioned in the concluding section, the theory outlined in 
that memo does not treat the case of variable rate sampling, as occurs, for exam-
ple, in perspective mappings. The Sampling Theorem assumes samples are taken 
at a uniform rate. We continue to assume a given input is sampled uniformly—at 
the pixels—and that the output is sampled uniformly—also at the pixels. So we 
can still use the Sampling Theorem, for example, to reconstruct the original input 
from its samples. In case of magnification and minification (scaling the abscissa x 
by a constant factor), the spacing of the input samples is changed by the scaling 
but the spacing remains uniform. In this memo, however, a less restricted class of 
mappings is considered which, in general, does not preserve input sample spac-
ing uniformity. A good illustration of such a mapping is 

𝑓(𝑥) =
𝑎𝑥 + 𝑏
𝑐𝑥 + 𝑑

 
which occurs in perspective [2]. 
 We shall show in this memo that the simplifications obtained for magnifica-
tion and minification do not go through for general mappings, including, unfor-
tunately, perspective. 
 Then we shall discuss some practical filters which are useful for the case 
where the Sampling Theorem does hold: for scaling, translation, and rotation. 
The filters include the Catmull-Rom and B-spline cubic spline basis functions 
and the sinc function made finite with a variety of window functions: Bartlett, 
Hamming, Hanning, Blackman, Lanczos, Kaiser, etc. 

THE GENERAL CASE 
We can use the Sampling Theorem for an arbitrary mapping 𝑓(𝑥) as follows: 

(1) Reconstruct 𝑔(𝑥) from the given  𝑔�(𝑥) samples by convolution. 
𝑔(𝑥) = [𝑔�(𝑥) ∗ sinc(𝑥)](𝑥). 

(2) Map 𝑔(𝑥) to obtain 𝑔�(𝑥). 
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𝑔′(𝑥) = 𝑔�𝑓(𝑥)� = [𝑔�(𝑥) ∗ sinc(𝑥)](𝑓(𝑥)). 

(3) Since high frequencies may have been introduced into the function by 𝑓(𝑥), 
we must low-pass filter it before resampling. 

ℎ(𝑥) = [𝑔′(𝑥) ∗ sinc(𝑥)](𝑥) = �[𝑔�(𝑥) ∗ sinc(𝑥)]�𝑓(𝑥)� ∗ sinc(𝑥)�(x). 

(4) Output ℎ�(𝑥) is simply ℎ(𝑥) at the pixels. 

THE SCALING SIMPLIFICATION 
In [1], we studied the case 𝑓(𝑥) = 𝑎𝑥 where 

𝑔′(𝑥) = 𝑔�(𝑎𝑥) ∗ sinc(𝑎𝑥) ∗ sinc(𝑥) 
or 

𝑔′(𝑥) = 𝑔�(𝑎𝑥) ∗ sinc(𝑎𝑥), 𝑎 < 1 

𝑔′(𝑥) = 𝑔�(𝑎𝑥) ∗ sinc(𝑥), 𝑎 ≥ 1 

(to within a normalization factor). These simplifications are easy to prove by 
looking in the frequency s domain where 

box(𝑎𝑠)box(𝑏𝑠) = box(min(𝑎, 𝑏) 𝑠). 

ARBITRARY ABSCISSA MAPPINGS 
Notice that we used the fact above that 

[𝑔(𝑥) ∗ ℎ(𝑥)](𝑎𝑥) = [𝑔(𝑎𝑥) ∗ ℎ(𝑎𝑥)](𝑥). 

This does not hold for arbitrary abscissa mappings 𝑓(𝑥): 
[𝑔(𝑥) ∗ ℎ(𝑥)](𝑓(𝑥)) ≠ [𝑔(𝑓(𝑥)) ∗ ℎ(𝑓(𝑥))](𝑥), 

in general. 
 Thus, for perspective in particular, sampling theory does not hold. Full con-
volution must be used in theory. That is, the sampled function must be recon-
structed from its samples (for which sampling theory works). The reconstructed 
function mapped by the abscissa mapping (eg, perspective) is then convolved 
with a low-pass filter to remove high frequencies introduced by the mapping. 
This step cannot be simplified as was accomplished in scaling case. Finally, the 
filtered function is sampled at the desired rate for output. Sampling theory again 
applies. 
 Although the result above is negative, it is only theoretically so. Approxima-
tions can be made—although not easily—to solve the filtering problem for per-
spective without resorting to full convolution. A case in point is ADO (Ampex 
Digital Optics), a machine for flipping video frames into perspective as often 
seen on current television. This machine, designed by Steve Gabriel and Larry 
Evans, approximates the perspective solution by switching among filters as the 
sample spacing decreases or increases. The details of this technique have not 
been published. 

PRACTICAL FILTERS FOR COMPUTER GRAPHICS 
In the figures accompanying these notes are two filters of support 4—ie, 

spanning 4 samples—and several of support 8. The support-4 filters are nothing 
more than the basis functions for the Catmull-Rom (cardinal) cubic spline and 
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the B-spline (beta) cubic spline which are familiar to computer graphicists from 
other contexts. The support-8 filters are all obtained from the sinc function from 
a window (function). Windowing is accomplished by multiplying a window func-
tion times the sinc function. In all cases the filters are FIR (Finite Impulse Re-
sponse) filters [3, 4]. 

The most simple window is just a box function of unit height and support 8. 
This is called the rectangular or Fourier window, and windowing in this case is 
simple truncation. The next higher order window is the triangular or Bartlett 
window. In the figures are shown several more sophisticated windows named 
typically for their discoverers. 

Since the ideal filter is the sinc, it must be the case that windowing causes a 
non-ideal filter. A feeling for the error introduced by windowing may be got 
from considering a step function—ie, a hard edge in a picture. Convolving the 
step with a truncated sinc introduces the so-called Gibbs phenomenon, under-
shoot before the edge, overshoot after it, and ripples in both places. Furthermore 
the edge is no longer straight up and down but is skewed slightly. So the hard 
end is softened slightly and appears to “ring” from the ripples on either side. A 
successful window function minimizes these annoying artifacts. As can be seen 
from Figure WINDOW, the more sophisticated the window, the smaller are the 
ripples (the lower is the “peak amplitude of the side lobe”) but the softer is the 
edge (“transition width of main lobe”). 

Figure WINDOW gives the formulas for Rectangular, Bartlett, Hamming, 
Hanning, and Blackman windows. The Kaiser window is a family of windows 
where the parameter 𝜔0 trades ringing for edge softening. A slightly different 
formulation [4] of the Kaiser family is 

𝑤(𝑛) =
𝐼0 �𝛼�𝑖(2 − 𝑖)�

𝐼0(𝛼) , 

where 

𝑖 =
2𝑖

𝑁 − 1
, 

and 𝛼 is the tradeoff parameter. 𝛼 = 0 corresponds to a Rectangular window and 
as it is increased by integers to about 10 it approximates the hierarchy of win-
dows listed above and then exceeds it in sophistication. The Hamming window, 
for example, corresponds to a Kaiser window with 𝛼 of 4 or 5. Several of the 
windows are shown in the figures as well as the filter resulting from the applica-
tion of them to the sinc function. 
 The modified zeroth-order Bessel function of the first kind is given by the 
following series: 

𝐼0(𝑥) = 1 + �
𝑥
2
�
2

+
�𝑥2�

4

12 ∙ 22
+

�𝑥2�
6

12 ∙ 22 ∙ 32
+∙∙∙ 

 A window not listed in Figure WINDOW is the Lanczos window which is 
the central lobe of the sinc function spread over support 8. Other filters which 
could be used include a truncated Gaussian and truncated cosine biased by its 
amplitude above zero. 
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 For many applications, the cubic spline basis functions suffice. It should be 
noted that the windowing used above for obtaining support-8 filters could just as 
well have been used for arbitrary wide filters, say support-16 filters. 
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where I0bg is the modified zeroth order Bessel function of the first kind. 
 

Window Peak Amplitude of 
Side Lobe (dB) 

Transition Width of 
Main Lobe 

Minimum Stopband 
Attenuation (dB) 

Rectangular 
Bartlett 
Hanning 
Hamming 
Blackman 

-13 
-25 
-31 
-41 
-57 

4 / Np  
8 / Np  
8 / Np  
8 / Np  

12 / Np  

-21 
-25 
-44 
-53 
-74 

 
Figure WINDOW [adapted from [3]] 
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Figure Captions: 
upper left: cubic b-spline basis, -4.0 ≤ x ≤ 4.0, -0.5 ≤ y ≤ 1 

upper right: cubic catmull-rom basis, -4.0 ≤ x ≤ 4.0, -0.5 ≤ y ≤ 1 
lower left: kaiser window, alpha = 10, -4.0 ≤ x ≤ 4.0, 0 ≤ y ≤ 1 
lower right: kaiser window, alpha = 4, -4.0 ≤ x ≤ 4.0, 0 ≤ y ≤ 1 
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Figure Captions: 
upper: sinc ∗ rectangle, -4.0 ≤ x ≤ 4.0, -0.5 ≤ y ≤ 1 

lower left: sinc ∗ kaiser(4), -4.0 ≤ x ≤ 4.0, -0.5 ≤ y ≤ 1 
lower right: sinc ∗ kaiser(10), -4.0 ≤ x ≤ 4.0, -0.5 ≤ y ≤ 1 
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