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Digital sampling and filtering in both space and time are intrinsic to comput-
er graphics. The pixels of a framebuffer representation of a picture are regularly 
placed samples in 2-dimensional screen space. Inappropriate application of sam-
pling theory (or no application at all) results in the artifact called “jaggies”. The 
frames of a film representation of a movement are regularly placed samples in 
time. The artifact here is called “strobing”. Spatial filtering, called “antialiasing”, 
is used to soften the jaggies.  Temporal filtering, called “motion blur”, removes 
strobing of edges and backward spinning stagecoach wheels. 

The purpose of this memo is to review the principles of digital sampling and 
filtering theory in the context of computer graphics. In particular, it is a reword-
ing of the classical results in terms with which I am comfortable. Hopefully other 
computer graphicists will also find the restatement helpful. 

We will deal here only with the spatial case. The two examples studied are 
scaling a picture up (magnification) and scaling a picture down (minification). We 
shall be especially concerned with what happens as magnification becomes mini-
fication—as the scale factor passes through 1. We begin with well-known theo-
rems and derive the principal result: four equivalent statements of the minifica-
tion process and four equivalent statements of the magnification process. 

Everyone seems to believe that sampling theory is simple, elegant, and 
straightforward, but it is my experience that whenever two computer graphicists 
try to discuss the subject they end up quibbling over details, sacrificing intuition 
in the impossible effort to convince one another that each knows the important 
details of the basic theory. I think this is because there are several (at least four) 
ways to look at a sampling process, all equivalent, and each combatant is fluent 
in only one or two of these ways and never the same ones as his opponent. 

Not only do I hope to offer a set of wordings to form a basis for comfortable 
conversation but also a set of equivalent intuitions among which we can pick and 
choose depending on the particular constraints of the hardware of software de-
sign problem at hand. 
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I warn the reader that the math is anything but rigorous. I omit normaliza-
tion factors, for example, and the spectra in the figures are not accurate transfor-
mations of the accompanying spatial functions. I concentrate instead on intui-
tion-forming diagrams and assume that the mathematical details can be readily 
filled in once the underlying concepts are fully grasped. 

BASICS 
I shall assume the reader is at home with the following basic notions: 

(1) Nyquist or sampling, theorem. A real-valued function bandlimited to fre-
quency f can be perfectly represented by a set of equally-spaced samples of 
the function taken at a rate of 2f. Furthermore, the real function can be recov-
ered from the sampled version by convolving the samples with an appropri-
ate filter (the sinc(x) function). See Fig. 1 for the sinc(x) function and its shape 
relative the sampling interval. Inadequately sampled functions, or insuffi-
ciently low-pass filtered functions, exhibit “aliasing” which manifests spa-
tially as jaggies or picture breakup (visible in a sequence of improperly sam-
pled pictures). 

(2) The Fourier transform. The transform of the sinc function is a box in the fre-
quency domain (a low-pass filter). If 𝐺(f ) is the transform of a real function 
𝑔(𝑥), then the transform of the sampled version of 𝑔(𝑥) is an infinite se-
quence of translations of 𝐺(f ). See Fig. 2. 

(3) Scaling a function’s abscissa. I shall refer to scaling a function up or down by 
which I will mean scaling its abscissa, not its ordinate. If 𝑔(𝑥) is a given func-
tion, then if it is scaled down by 1/𝑎,𝑎 > 1., the new function is 𝑔(𝑎𝑥). If its 
scaled up by 𝑎 > 1., then the new function is 𝑔(𝑥/𝑎). See Fig. 3 for the graph-
ical meaning of scaling up and down. Also indicated in this figure is the fact 
that scaling down (up) a function of x is equivalent to scaling up (down) its 
frequency content. 

(4) Convolution. Convolution in the space domain is equivalent to multiplica-
tion in the frequency. The convultion of 𝑔(𝑥) with ℎ(𝑥) is also a function of x 
which I shall represent by 

𝑐(𝑥) = [𝑔(𝑥) ∗ ℎ(𝑥)](𝑥). 
Note in particular that if this convolution is scaled by the real factor a, then 
the scaled convolution is given by 

𝑐(𝑎𝑥) = [𝑔(𝑥) ∗ ℎ(𝑥)](𝑎𝑥).. 
(5) Specifically, we will use the fact that convolution with sinc(x) in space is 

equivalent to low-pass filtering the frequency spectrum with a box—ie, mul-
tiplying it by box(f). 

REASONING FROM BASICS: MINIFICATION 
Minification, shrinking, scaling down, decimation, and sampling rate reduc-

tion are all terms used to describe one process. In terms of pictures, when we re-
duce the size of the picture we minify it (cf, magnify for the opposite process). I 
will describe this process in as straightforward a manner as I can using basic 
concepts. I will do the same for magnification in the next section. This will lead to 
a very simple set of descriptions for the two processes in digital filtering terms. 
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Finally, by application of two simple theorems, this pair of descriptions will be 
converted into three other equivalent pairs of descriptions. 

In computer graphics terms, the problem of minification is to convert a sam-
pled version of a picture into a sampled version of the same picture reduced in 
size. This is to be accomplished with as much integrity as possible and without 
introduction of aliasing. We assume that 𝑔(𝑥) is the original picture and that 
𝑔�(𝑥) is the sampled version (residing, for example, in the pixels of a framebuff-
er). In other words, what we are given is 𝑔�(𝑥). For convenience, only the 1-
dimensional case is studied here. Note that this is completely sufficient for 2-pass 
transforms of pictures [1]. We assume that 𝑔(𝑥) can be accurately reconstructed 
from the given samples 𝑔�(𝑥)—ie, that 𝑔(𝑥) has been correctly low-pass filtered. 

What we want to obtain is the set of samples which correctly represents a 
scaled down version of 𝑔(𝑥). Let ℎ(𝑥) = 𝑔(𝑎𝑥),𝑎 > 1. Thus h is g reduced by a 
factor 1/𝑎. What we want is ℎ�(𝑥), the correctly sampled representation of ℎ(𝑥). 
These samples are what we would write into a framebuffer, say. There are two 
ways to do this but one is substantially easier to compute than the other. 
The Hard Way 
(1) Reconstruct 𝑔(𝑥) from the given 𝑔�(𝑥) samples by convolution. 

𝑔(𝑥) = [𝑔�(𝑥) ∗ sinc(𝑥)](𝑥). 

This is shown in Fig. 4a-4b in both space and frequency domains. 
(2) Scale 𝑔(𝑥) to obtain 𝑔′(𝑥). 

𝑔′(𝑥) = 𝑔(𝑎𝑥) = [𝑔�(𝑥) ∗ sinc(𝑥)](𝑎𝑥). 

This stretches 𝐺(f), the Fourier transform of 𝑔(𝑥), by a in the f direction to ob-
tain 𝐺′(𝑓), the transform of 𝑔′(𝑥). See Fig. 4c. 

(3) Since, by scaling down, high frequencies may have been introduced into the 
function, we must low-pass filter the function before resampling. 

ℎ(𝑥) = [𝑔′(𝑥) ∗ sinc(𝑥)](𝑥) = [[𝑔�(𝑥) ∗ sinc(𝑥)](𝑎𝑥) ∗ sinc(𝑥)](𝑥). 

In the frequency domain, 𝐺′(𝑓) is low-pass filtered to obtain 𝐻(f ). See Fig. 
4d. 

(4) ℎ�(𝑥) is simply ℎ(𝑥) at the pixels. Notice that we assume here that the sample 
points remain fixed and the functions change shape relative to these fixed 
points. This point is key to our various equivalent models derived later. 

The expression above for ℎ(𝑥) is quite difficult. Fortunately, there is a simpler 
expression which can be derived using Fourier transform theorems. 
The Easy Way 
 See Fig. 5a for a summary of what we just did in the frequency domain. The 
replicated spectrum of 𝑔(𝑥), due to the sampling process, was reduced to a single 
copy of the spectrum by low-pass filtering (convolving with sinc(𝑥) in the space 
domain). Then 𝐺(f ) was stretched to get 𝐺′(f ), which was finally low-pass fil-
tered to get 𝐻(f ). Fig. 5b shows that we would obtain the same result if we skip 
the first step, the reconstruction of 𝑔(𝑥) from 𝑔�(𝑥). If we simply stretch the spec-
trum 𝐺�(f ) instead of 𝐺(f ), then low-pass filter the result 𝐺′(f ), we would obtain 
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the same result 𝐻(f ) as in Fig. 5a. In the space domain this second process trans-
lates into: 
(1) Scale 𝑔�(𝑥) by 1/𝑎: 

𝑔�′(𝑥) = 𝑔�(𝑎𝑥). 

(2) Get rid of added high frequencies: 
ℎ(𝑥) = [𝑔�(𝑎𝑥) ∗ sinc(𝑥)](𝑥). 

(3) ℎ�(𝑥) is ℎ(𝑥) at the pixels. 

Fig. 6 is a graphical summary of this easier method of obtaining the desired out-
put pixels. This simplification is also easy to prove by looking in frequency f do-
main where 

box(𝑚𝑓)box(𝑛𝑓) = box(min(𝑚,𝑛) 𝑓). 
Thus 

sinc(𝑎𝑥) ∗ sinc(𝑥) = sinc(𝑥) 
for 𝑎 > 1. 

REASONING FROM BASICS: MAGNIFICATION 
Magnification, stretching, scaling up, interpolation, and sampling rate in-

crease are all terms used to describe one process. In terms of pictures, when we 
increase the size of the picture, we magnify it. Magnification does not require 
any computation-reducing manipulations, as did minification. It is basically 
straightforward. 

(1) Reconstruct 𝑔(𝑥) from the given samples 𝑔�(𝑥)  
𝑔(𝑥) = [𝑔�(𝑥) ∗ sinc(𝑥)](𝑥). 

 This process in both space and frequency is illustrated in Fig. 7. 
(2) Scale 𝑔(𝑥) up by 𝑎 > 1. 

𝑔′(𝑥) = 𝑔(𝑥/𝑎). 

(3) Since scaling up reduces frequency content, we don’t have to low-pass filter 
as we did in the minification case before sampling. That is, ℎ(𝑥) = 𝑔′(𝑥) and 

ℎ�(𝑥) = [𝑔�(𝑥) ∗ sinc(𝑥)](𝑥/𝑎) 
 at the pixels. 

Fig. 8 summarizes the filtering implied by this math. 

MAGNIFY/MINIFY: FORMULATION A 
A summary description of the two filtering processes just detailed is given 

below in a form convenient for our purposes. By “attaching a weighted filter to a 
pixel”, I mean that the filter is centered at the position of the pixel and its scaled 
by the height of the pixel. 
Magnify: 

(a) Attach magnified weighted filters to each input pixel image. 
(b) Sum contributions at each output pixel. 

Minify: 



Digital Filtering Tutorial for Computer Graphics 5 

  

(a) Attach weighted filters to each input pixel image. 
(b) Sum contributions at each output pixel. 

In the magnify case, the filter is magnified by the amount that 𝑔(𝑥) is magnified 
to get 𝑔′(𝑥). If 𝑔′(x) = g(𝑥/𝑎) and the filter function is 𝑓(𝑥), then 𝑓′(𝑥) =
f(𝑥/𝑎),𝑎 > 1. (We will use f to represent both the filter domain variable and an 
arbitrary filter function; the context will make clear which is intended.) 

A THEOREM 
 This easily derived theorem just states the fact that scaling a convolution of 
two functions is equivalent to convolving the two functions scaled. 
Theorem 1. If the convolution of 𝑔(𝑥) with ℎ(𝑥) is given by 

𝑐(𝑥) = [𝑔(𝑥) ∗ ℎ(𝑥)](𝑥), 
then 

𝑐(𝑎𝑥) = [𝑔(𝑥) ∗ ℎ(𝑥)](𝑎𝑥) = [𝑔(𝑎𝑥) ∗ ℎ(𝑎𝑥)](𝑥). 

MAGNIFY/MINIFY: FORMULATION B 
Fig. 9 shows that by a simple scaling all the manipulations performed in 

Formulation A above in the input domain can be equivalently carried out in the 
output domain and vice versa. This is simply an application of Theorem 1 to 
Formulation A. Thus our second formulation is as follows: 
Magnify: 

(a) Attach weighted filters to each input pixel. 
(b) Sum contributions at each output pixel preimage. 

Minify: 
(a) Attach magnified weighted filters to each input pixel. 
(b) Sum contributions at each output pixel preimage. 

In the minify case, the filter is magnified by the amount that 𝑔′(𝑥) would have to 
be magnified to obtain 𝑔(𝑥). If 𝑔′(𝑥) = 𝑔(𝑎𝑥), then 𝑓′(𝑥) = 𝑓(𝑥/𝑎),𝑎 > 1 

ANOTHER THEOREM 
The following easily derived theorem gives us two more formulations: 

Theorem 2. For symmetric filters, the sum at location x of weighted filters spaced 
at distance T is equal to the sum of samples of a single unweighted filter posi-
tioned at x where filter samples are T apart and weighted by the sample at the 
filter sample point. 
Fig. 10 illustrates the Theorem. The sum in Fig. 10a at location 𝑥0 is 

𝐴𝑓(𝑥0 − 𝑎) + 𝐵𝑓(𝑥0 − 𝑏) + 𝐶𝑓(𝑥0 − 𝑐) + 𝐷𝑓(𝑥0 − 𝑑). 
For Fig. 10b it is 

𝐴𝑓(𝑎 − 𝑥0) + 𝐵𝑓(𝑏 − 𝑥0) + 𝐶𝑓(𝑐 − 𝑥0) + 𝐷𝑓(𝑑 − 𝑥0). 

These are clearly the same if 𝑓(𝑥) = 𝑓(−𝑥)—ie, if f is a symmetric filter. The theo-
rem actually holds for asymmetric filters also, using the same proof technique as 
above. The generalization requires only a slight rewording to use the negative of 
the filter. 
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Theorem 2 (Generalized). For an arbitrary filter 𝑓(𝑥), the sum at location x of 
weighted filters f spaced at distances T from x is equal to the sum of samples of a 
single unweighted filter 𝑓′(𝑥) = 𝑓(−𝑥) positioned at x where filter samples are 
taken at distances T from x and weighted by the sample at the filter sample point. 
Since we usually deal with symmetric filters (except in the case of perspective [cf, 
item (4) in the Conclusion]), at the first version of Theorem 2 will suffice. 

MAGNIFY/MINIFY: FORMULATION C 
This formulation is obtained by applying Theorem 2 to Formulation A. 

Magnify: 
(a) Position magnified unweighted filter at each output pixel. 
(b) Sum this filter’s samples at each input pixel image under it, weighted by 

the corresponding input pixel. 

Minify: 
(a) Position unweighted filter at each output pixel. 
(b) Sum this filter’s samples at each input pixel image under it, weighted by 

the corresponding input pixel. 

MAGNIFY/MINIFY: FORMULATION D 
This formulation is obtained by applying Theorem 2 to Formulation B. 

Magnify: 
(a) Position unweighted filter at each output pixel preimage. 
(b) Sum this filter’s samples at each input pixel under it, weighted by the 

corresponding input pixel. 
Minify: 

(a) Position magnified unweighted filter at each output pixel preimage. 
(b) Sum this filter’s samples at each input pixel under it, weighted by the 

corresponding input pixel. 

CONCLUSION 
We can choose any formulation for magnify from the four above and can in-

dependently choose any for minify. So let’s choose a pair which seems particular-
ly convenient, Magnify Formulation C and Minify Formulation C—ie, Formula-
tion C: 
Magnify: 

(a) Position magnified unweighted filter at each output pixel. 
(b) Sum this filter’s samples at each input pixel image under it, weighted by 

the corresponding input pixel. 
Minify: 

(a) Position unweighted filter at each output pixel. 
(b) Sum this filter’s samples at each input pixel image under it, weighted by 

the corresponding input pixel. 
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The result then is that to go smoothly from minify to magnify we must simply stretch 
the filter as we begin to magnify. But stretching a filter is simply scaling down the 
index into it (assuming it is represented by a finely divided table). Fig. 11 shows 
how a filter would be affected as the scale factor changes. 
 We can put Fig. 11 into words: Let 𝑃(𝑥) be the intensity of the input pixel at 
input pixel location x. Let 𝑥′ be the image of x, and let 𝑥𝐿′  be the image of 𝑥𝐿 
which is the input pixel location just left of x—ie, 𝑥 − 1. Then let a be the scaling 
factor—ie, 

𝑎 = |𝑥′ − 𝑥𝐿′ |. 

Finally, let 𝑥𝑜𝑢𝑡 be the output pixel location for which we are calculating the in-
tensity, and 𝑓(𝑥) be the filter function. Then we have the following: 

Magnify (𝑎 > 1): 
The value which the input pixel at x contributes to the output pixel at 𝑥𝑜𝑢𝑡 is 
the amount 

𝑓 �
𝑥′ − 𝑥𝑜𝑢𝑡

𝑎
� ∗ 𝑃(𝑥) 

(ie, the index into 𝑓(x) is scaled down by 1/𝑎). 

Minify (𝑎 < 1): 
The value which the input pixel at x contributes to the output pixel at 𝑥𝑜𝑢𝑡 is 
the amount 

𝑓(𝑥′ − 𝑥𝑜𝑢𝑡) ∗ 𝑃(𝑥). 

 Consider a filter of support 4—ie, it extends plus or minus 2 pixels from the 
pixel it is centered on. It is interesting to notice that, for magnification, there are 
always exactly 4 input pixel images under the (unweighted stretched) filter. 
 Issues we have not covered are 

(1) Normalization to ensure that flat fields remain flat at the same value. The 
trick is to filter table entries as well as weighted table entries (weighted by 
the intensity of the corresponding pixels), then divide the weighted sum by 
the unweighted sum. 

(2) The effect of finiteness of both spatial and frequency extent on the theory 
above. This is dealt with in FFT literature. 

(3) The choice of a good filter, assuming a finite filter is desired (eg, one of sup-
port 4). There is a mountain of literature on this subject [2, 3]. 

(4) Variable rate sampling (as occurs in perspective mappings) and its effect on 
the theory above. 
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Fig. 1. Pixel rate sampling function and the corresonding reconstruction filter, 
sinc(x) = sin(πx)/(πx). 

  



Digital Filtering Tutorial for Computer Graphics 9 

  

Fig. 2. A sampled function’s spectrum is an infinite sequence of the unsampled 
function’s spectrum. 
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Fig. 3. Magnification and minification in space and frequency. 
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Fig. 4. The process of minification. 
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Fig. 5. The hard and easy ways to minify. 
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Fig. 6. Details of the minification process. 



Digital Filtering Tutorial for Computer Graphics 16 

  

 
Fig. 7. The process of magnification. 
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Fig. 8. Details of the magnification process. 
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Fig. 9. Theorem 1 applied to magnify/minify. 
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Fig. 10. Theorem 2 illustrated. 
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Fig. 11. Filter changes with scale factor. 
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