
Microsoft v5.4

AA SSpprriittee TThheeoorryy ooff IImmaaggee CCoommppuuttiinngg
Technical Memo 5

Alvy Ray Smith
July 17, 1995

TABLE OF CONTENTS
TABLE OF CONTENTS__0-1

CHAPTER 1: OVERVIEW__1-3

Introduction __ 1-3

Origins___ 1-3

Sampling v Geometry __ 1-5

Creative Space v Display Space_______________________________________ 1-8

Definition of Image __ 1-8

Definition of Sprite and Shape ______________________________________ 1-11

Coordinate Systems ___ 1-12

Continuous Operators on Discrete Sprites _____________________________ 1-13

CHAPTER 2: BOX ALGEBRA _____________________________________2-16

Box Algebra__ 2-16

Support ___ 2-16

Points___ 2-16

Boxes ___ 2-18

Box Operators __ 2-20

Special Box Routines __ 2-22

Alternative Algebra ___ 2-23

CHAPTER 3: IMAGE ALGEBRA ___________________________________3-27

Image Algebra__ 3-27

Channels __ 3-27

Color ___ 3-28

Pixels ___ 3-29

Images, Cards, and Sprites__ 3-30

Subimages and Subsprites__ 3-32

Image Assignment __ 3-33

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

0-2

An Informative Example ___ 3-35

Image Compositing Operators and “Expressions”_______________________ 3-36

Image Functions __ 3-38

Image Composition ___ 3-40

Image Composition Display __ 3-42

Sprite Picking __ 3-43

Future Directions ___ 3-43

REFERENCES ___4-44

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

1-3

CHAPTER 1: OVERVIEW
Introduction

This paper is an introduction to a theory of image computing. The theory, or
model, underlies everything I say or think about images and imaging. It is also
the implicit model behind the software application, Altamira Composer, that Mi-
crosoft inherited in its purchase of my company Altamira Software Corporation
last year.

I have found myself involved in many different conversations within Micro-
soft, including many related to the adaptation of substantial portions of Altamira
Composer source code for future Microsoft products. It is difficult to carry on
these discussions without a shared understanding of the concepts presented
here. This document should also serve to ease the task of those attempting to
learn the Altamira Composer code. And aspects of the model will greatly influ-
ence the highly generalized media model of the Media Foundation that Nicholas
Clay and I (and many others) are currently designing.

Much of what appears here is a reworking of ideas first presented in
[Smith89a], modified by experience using the ideas in an actual application, Al-
tamira Composer.

Origins
The primary idea behind the model to be presented here, the Altamira sprite

theory or model of image computing, was that one was needed at all. It came
from my realization, in the 1980s, that the reason the “image processing” market
had not taken off was that it had no center—it was undefined. As opposed to the
2D geometry market—also known as desktop publishing—which was founded
on the careful definition of 2D geometry embodied in the PostScript language,
there was no accepted definition of 2D image computing. Every company or in-
stitution in the business had an internal idea, often vague, of a model that, of
course, differed from the others. So I spent about a year at Pixar defining a lan-
guage, called IceMan, to accomplish for images what PostScript did for 2D ge-
ometry. Many of these concepts, but not the IceMan language itself, I embodied
in a prototype application that eventually became Altamira Composer. The con-
cepts grew and matured in Altamira Composer, and they are those presented
here1.

But I could not have come up with the concepts in the first place if there had
not been two important ideas already in place: the alpha channel and matting

1 The IceMan language remained with Pixar when I left to form Altamira Software and is proprie-
tarily Pixar’s. However, the concepts embodied in Altamira Composer may be used freely by Mi-
crosoft. Altamira Composer is not based on a language, but it does share some definitions with
IceMan, such as image, box, and point.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

1-4

“algebra”2—particularly, premultiplied alpha. I and my colleague Ed Catmull
came up with the concept of the alpha channel in the 1970s at the New York In-
stitute of Technology. It has become so standard in computer graphics that I do
not think I have to explain it. It is one of those concepts that one can hardly be-
lieve had to be invented. The crucial distinction involved in the invention was
not that two images could be combined by use of linear interpolation under con-
trol of a mixing factor, typically denoted α. This notion, image composition, was
obvious and used often even in the early days of computer graphics. The impor-
tant leap was to append alpha to every pixel as a component, the alpha channel,
of a pixel just as fundamental to it as its color components. Thus one began to
think of opacity as an intrinsic part of an image rather than as a separate notion.

It is not hard to understand why we didn’t leap to the concept of the integral
alpha before we did. Recall that at the time memory was still very expensive. A
video framebuffer, 640x480x8 bits, cost $60,000-$80,000 (cf current price of about
$100). So an RGB framebuffer cost about $200,000 and an RGBA framebuffer
(with an alpha channel storage) cost about $250,000 (in 1975 dollars)3. It was non-
trivial to increase memory usage by 25%. And we were the only facility in the
world that had even an 8-bit framebuffer, and we were first for a long time with
a 24-bit one and a 32-bit one. Nevertheless, once we had the hardware, we
quickly got to the software notion.

Although we added the alpha channel to our thoughts and computations
and hardware, we still did not fully understand it. It wasn’t until my Lucas-
film/Pixar colleagues Tom Porter and Tom Duff invented the matting algebra
(see [PorterDuff84]) that the confusion between premultiplied and not-
premultiplied alpha was made explicit and cleared up. I have discussed the fun-
damental compositing operator over and the premultiplied alpha concept in
[Smith95], where the case for premultiplied alpha is improved and shown to be
strong.

The most important idea that became possible with the understanding of
premultiplied alpha is the shaped image —that is, a non-rectangular image. I point
out in [Smith95] that because premultiplication by alpha completely clears trans-
parent pixels of any current or future information, they cease to exist conceptu-
ally (although they still might continue to occupy memory). A pixel with alpha
equal 0 requires, in the premultiplied alpha case, that all of its color channels be 0
too. And once one ceases to think of empty pixels, it is an easy leap to shaped
images.

I captured shaped images in IceMan with the image type. In Altamira Com-
poser, I captured it in the image object, and called them that in Altamira market-

2 Although often called a matting algebra, it is not really an algebra by any usual mathematical
definition of that term.
3 That’s about $1 million in 1995 dollars!

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

1-5

ing. This got confused with “layers” in the market, a restricted and rigid concept4
that can be simulated with image objects but not vice versa. So here at Microsoft
we are going to call the shaped image, or image object, a sprite. I wish I had
thought of marketing them as sprites at Altamira. This would have simplified the
marketing message and kept the confusion with layers at bay5.

So it was alpha intimately in the pixel—the alpha channel—and premulti-
plied alpha—with transparent pixels forever superfluous and hence conceptually
nonexistent—that led eventually to the shaped image, or image object, or sprite.
The result has been to free the image from the tyranny of the rectangle and to
make it—or more properly, a sprite or image object—coequal to a geometric ob-
ject. This is one example of digital convergence between two quite different ob-
jects, once they are correctly represented digitally.

As will be shown below, the creation of the sprite (in the generalized mean-
ing here as a shaped image object) has changed the notion of image computing
from “image processing”—that connotes doing things to a static monolithic rec-
tangular image—to “image composition”—that connotes a space full of floating
shaped, transparent sprites that can be rearranged in spatial position and depth
arbitrarily. Of course, the ability to do arbitrary image processing or editing on
each sprite is still completely available but is no longer necessarily the focus of an
interaction with images. Most of the operations have to be rethought, however,
to handle alpha and shape information.

Sampling v Geometry
One contribution of the sprite theory of image computation is a careful de-

lineation between imaging, or sampling, and geometry. I have drawn this fun-
damental distinction many times (eg, [Smith88]), but it bears repeating because
the confusion is still common. See Figure 1.

There are two different ways to make pictures with computers. The one most
popularly understood is that based on geometry, often called “computer graph-
ics” or “CGI” or “3D synthesis”. This includes Jurassic Park graphics and the
soon-to-be-released Toy Story from Pixar and Disney. The other is based on sam-

4 To get a feel for the limitations of the layer concept, try to generalize it to 3D. Freely floating ob-
jects easily generalize, but layers don’t. Furthermore, layers usually connote a stack of rectangles,
all of the same size, in register. One has to carry around the mental baggage of the transparent
portions as being part of the layer. There is no conceptual problem with having two sprites at the
same depth but in layer terminology, one would have to assign the two sprites to the pre-existing
layer somehow to model the concept. This is unnecessary machinery.
5 I had noticed already that the sprite was the nearest thing at Microsoft to what we were using at
Altamira, but failed to generalize their term and apply it to our image objects, thinking that
sprites were still—as they were originally—dumb, extremely simple, rigid icons on PC screens,
with jagged edges and few colors, exactly what we did not want associated with our image ob-
jects. Interestingly, however, it was an interview in Scientific American with Nathan Myhrvold
where he mentioned briefly a conversation with Bill Gates about a generalized notion of sprite
that alerted me that I should visit Nathan and tell him about our concepts before he “did it
wrong”. The rest is, as they say, history.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

1-6

pling theory, often called “image processing” or “imaging”. The digital pictures
coming back from the Voyager planetary flybys are of this type, as are digitized
photographs, and digital video. The Visible Human from the National Library of
Medicine is another excellent example. In the sampling-based way, there is no
geometry involved at all. A classic pair of apps that implicitly make the distinc-
tion are MacPaint (imaging) and MacDraw (geometry). This also shows that
computer graphics and image processing are sloppy terms, since paint programs
are nearly always included in the former but not in the latter.

The sampling v geometry distinction is fundamental. The two paths, geome-
try-based and sampling-based (we will also sometimes say image-based), have dif-
ferent mathematical bases (geometry and sampling theory), different heroes
(Descartes and Nyquist, say), different histories, different journals and confer-
ences, and so forth. Ivan Sutherland is often given credit for fathering computer
graphics, but if true6 then it only applies to the geometry half of computer graph-

6 Perhaps the most accurate statement is that he was the first with interactive editing of geometri-
cal computer graphics. He was certainly preceded by others with interactivity and geometry. The
development of sampling-based computer graphics proceeded in parallel with completely differ-
ent but simultaneous players.

Geometry Domain Sampling Domain

Geometric
Model

Image, or
Sprite

Continuous Discrete

Rendering

Extraction

Figure 1

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

1-7

ics (now extending the term to include all ways of making pictures on com-
puters).

The reason for confusion is easy. We cannot see geometry. Geometry is ab-
stract. In order to see it, we have to convert it into an array of samples, called an
image (and the samples are called pixels). This conversion step is called render-
ing. Since both approaches to picture making with computers result in an array
of pixels, many nontechnical people cannot distinguish the two processes.

The distinction being drawn is really between the continuous and the dis-
crete. Geometrical descriptions are continuous and use the real numbers. Sam-
pling descriptions are discrete and often use the integers, especially in the case of
pictures. Geometric descriptions, when they suffice, can be extremely succinct.
Sampling descriptions, can describe many more things than geometry, but suffer
from a definite lack of succinctness. The point is that both are equally valid, but
different. I shall be very careful to distinguish geometrical concepts from imag-
ing concepts below. You might think me excessive in this, but I almost daily see
and hear confusions that are directly due to a lack of care at this boundary. Once
we are comfortable with the distinctions, then it is straightforward to implement
the digital convergence of geometry and sampling.

Some words or notions that put me on alert that the geometry-imaging con-
fusion is lurking nearby are these [a correction or criticism is in square brackets]:
• A pixel is modeled as a little geometric square7 [a pixel is a point sample]
• A pixel is located on the half pixels [samples are array elements with indices

as “location”; there is no such thing as a half pixel—comes from the little
square model]

• A monitor has non-square pixels [again, pixels are point samples; the correct
notion is pixel spacing ratio (PSR); the notion being conveyed is that the sam-
pling distance in the horizontal dimension is different from that in the verti-
cal—ie, the PSR is not 1, or “non-square pixel spacing”]

• Images have regions of interest [usually means a geometrically defined re-
gion; the mapping to a sampled image is undefined, it being assumed obvi-
ous; it never is; the alpha channel nearly always captures the notion accu-
rately and with more generality]

• An image is a rectangle or rectangular picture [an image is a rectangular array
of samples; it does not reconstruct, by the Sampling Theorem, into a rectangle
or rectangular picture8, in any but the dumbest use of that theorem (with the
worst9 reconstruction filter, a box)]

7 The little square has been extremely important to computer graphics—we wouldn’t be where
we are today in 3D synthesis without it. It is a simplifying model that represents contributions to
a pixel. The mistake is to identify this simplying model with the pixel itself.
8 See the section below entitled Continuous Operators on Discrete Sprites and its Figure 2.
9 Well, the worst is really no filter at all—point sampling.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

1-8

 Creative Space v Display Space
Another fundamental distinction that the following theory makes is that be-

tween creative space and display space. I believe that this distinction is one of the
most profound contributions of the computer to the arts. It is an obvious distinc-
tion in 3D computer graphics synthesis. One models in 3D unbounded space
with abstract geometrical objects. One displays views of this creative space that are
2D and restricted to the size allowed by some output medium such as 35mm film
or NTSC video. The choice of display space is separate from the creation or model-
ing in creative space. It is, in fact, a separate creative step. Many display spaces
can correspond to one creative space.

We shall borrow this distinction completely into the imaging domain. This is
new. Nearly all imaging applications confuse the two. For example, most popu-
lar imaging applications equate display space to the rectangular image being ed-
ited. One opens an image (meaning rectangular with no partial transparencies)
and this maps to its own window on a display screen. Open another image and it
is mapped to its own window. The fact that they could be two sprites in the same
creative space is thus outlawed from the beginning.

This is to be contrasted to a 2D drawing program for example. Here, just as
in the 3D synthesis case, one creates in a space modeled as unbounded 2D (or
unbounded 3D). Different geometric objects (a square, a triangle, etc) can be
placed in that space and moved around relative one another, placed in different
depth order, aligned against one another, and so forth. In our model, image
sprites can be dealt with exactly analogously. And once this is absorbed, then it is
obvious how to implement the digital convergence of 2D image objects (sprites)
and 2D geometrical objects. Simply put the two different objects in the same crea-
tive space and render them appropriately to display space, ie, with the renderer
suitable to the type of the object.

Definition of Image

An image is a finite nD rectilinear array of pixels of identical type. A pixel
consists of one or more channelvalues of identical type, where a channel-
value is a number representing a sample.

This deceptively simple definition hides a host of implications concerning fi-
niteness, dimension, shape, type, sampling rate, alignment, and uniformity. This
discussion should also make it clear why no two organizations completely agree
in general on the definition of an image, and hence the need for a model.

An image must be finite. Strictly speaking, it must be representable in a digi-
tal computer. This means that an image is finite in extent in each of its dimen-
sions and in the number of bits per channel. Our definition is still quite broad. In
an actual implementation of our model, only certain available data types—eg,
integers, floats, bytes—are permitted for representing channels, hence images.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

1-9

An image is nD, with n ≥ 0. The dimensions are not necessarily spatial. Our
model principally provides support for 2D images, time sequences of 2D images
(movies, books), 3D images (volumes), and time sequences of 3D images (volume
movies). The model supports 1D images mainly to the extent they are subimages
(scanlines) of 2D or 3D images, and it supports 0D images to the extent they are
trivial subimages (pixels) of higher dimensional images. But time and space are
just names for the dimensions; the model does not care what they really repre-
sent. And subimages are images, so the model supports 0D through 4D images
and is theoretically capable of higher.

An image is rectilinear. This means that its support is rectilinear, where the
support for an image is the set of locations at which its samples are taken. The
support for a 1D image is a finite set of points along a line segment. The support
for a 2D image is a finite set of points on a rectangle-bounded plane. The support
for a 3D image is a finite set of points in a volume bounded by a right rectangular
parallelepiped. And so forth. Clearly, non-rectilinear images are necessary—eg,
as brushes in a paint program. The model handles arbitrary shape with an imag-
ing notion, not a geometrical one. Non-rectilinear shape is determined by an-
other image, called a matte. The matte can be a separate image or reside in a
channel of the image to be shaped. Such a channel is sometimes referred to as a
matte channel, or equivalently an alpha channel. Where a matte is 0, the corre-
sponding image can be considered to not exist (or be transparent). Where it is 110,
the image is opaque. Where fractional between 0 and 1, the corresponding image
is partially transparent. This powerful notion allows arbitrary shapes including
disconnected components and components with holes.

An image has pixels of identical type, and its pixels have channelvalues of
identical type. The type of a pixel is determined by the number and type of its
channelvalues. For example, a pixel in a prepress application might have five
channels—representing yellow, magenta, cyan, key, alpha (YMCKA)—where the
channelvalues are 8-bit unsigned bytes. All pixels in a single image must have
this same type. A pixel with more than five or less than five channels is not al-
lowed in an image of these pixels. An image may also be thought of as a list of
channels, where the ith channel of the image is an array of all the ith channelval-
ues of the pixels comprising the image. The model provides utilities for combin-
ing channels into a thicker (in the sense of more channels) image, or for extract-
ing channels from an image to form another thinner image. With these functions,
arbitrary combinations of images with different pixel types can be effected so
long as they have channelvalue types in common.

To represent channels with different types, they are represented as separate
images and these are bound together with a higher order concept (such as the
“imagestruct” in Altamira Composer).

10 We use a floating point number between 0. and 1. for alpha for convenience only. It is often
realized in an 8-bit unsigned byte with values between 0 and 255.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

1-10

An image consists of samples. A fundamental assumption of the model is
that each channel of an image can be reconstructed, using the Sampling Theo-
rem, to retrieve the continuum which it represents—eg, a color separation, an
electromagnetic field, an airflow over a wing, or a height or depth field. This
does not mean that such a reconstruction will ever happen, nor does it imply that
the samples were taken correctly in that the continuum was low-pass filtered for
removal of inappropriate frequencies. Neither does it imply that anything fancier
than point sampling will actually be employed in an image computation. The as-
sumption of sampling does restrict the class of things which can be called im-
ages. For example, a 4x4 matrix is not an image. A program—a 1D list of num-
bers—is not an image. A list of telephone numbers or polygons is not an image.
And since samples must be numbers, the following are also not images: a tiled
floor, a chessboard, a deck of cards, a Rubik's cube. More pertinently, an image of
geometrical objects is not an image unless it is a digital representation of those
objects—that is, a sampling, or “rendering” or “scan conversion”, of the continu-
ous picture of the objects. Similarly, in the the model sense, a photograph or
painting is not an image unless it is digitally represented. A goal and important
contribution of the model is to properly take care of filtering while hiding the dif-
ficult details of this task from an application, unless it specifically wants to deal
with the subject. It should be added that there is no way for the model to “know”
whether an array of numbers is an image or not. Many of the capabilities of the
model are undoubtedly useful for computing on these non-image arrays as well.

An image has all channels at the same resolution. The sizes or extents of the
dimensions can each be different, but whatever the n sizes are in one channel
must be the same in all other channels of an image. For example, a 2D image
with red, green, and blue (RGB) channels which has a red channel of size 640x480
samples, must have the green and blue channels also at sizes 640x480. There are
common cases that seem to violate this part of the definition. For instance, a
depth channel associated with our RGB example might be “supersampled” to
have 8x8 depth samples per each color sample. Or in a graphic arts example, the
line art or text might be a single-bit channel at a resolution six times as high as
the “contone” (continuous tone) color channels which might be CMYK channels
of 8 bits each. The model requires that images at different resolutions be treated
as separate images11. An application binds them into a single entity as a higher-
order structure. This includes so-called multi-resolution representations of im-
ages. Sometimes it is possible to bitpack, or otherwise encode, a higher resolution
image into a lower resolution data type which then is permitted to be a channel
at the lower resolution. This works if the higher resolution is an integer multiple
in each dimension of the lower.

11 Or that a multi-resolution representation be hidden from users using the object-oriented para-
digm.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

1-11

An image has all samples of a pixel aligned at a single location. This means
in our example that the RGB samples in a single pixel correspond to the color at a
single point of the picture represented by the image. Strictly speaking, the defini-
tion has no requirement that this be so, but the model assumes it. An application
built on the model might elect to ignore this assumption. As for different resolu-
tions, the model handles nonaligned channels as different images bound to-
gether, by an application program, with a higher-order data structure. In graphic
arts, for example, the four color separations of an image are often converted to
halftone spot arrays which are rotated relative one another. If these halftone
separations are represented as numbers aligned with the rotated axes, then they
cannot be channels of a single image; a higher-order image structure is required.
But if the rotated halftones are actually represented with very high resolution,
aligned bit arrays (as is common), then they may of course be treated as channels
of a single image.

An image has all samples taken uniformly in each dimension. The rate or
spacing can differ between dimensions, however. Again, strictly speaking, the
definition does not require this, but the model assumes it. To be clear, the model
does not assume resampling cannot occur nonuniformly, as in image warping,
but it does assume that the input and output of such a computation are uni-
formly sampled. An application can elect to ignore the assumption. An example
where this might be appropriate occurs in medical volume imaging. CT slices are
frequently acquired at nonuniform spacings through a patient's body. An appli-
cation program in this case would have to deal with input volumes of nonuni-
form sample spacings.

Finally, the model of image assumes samples are taken uniformly and
aligned with its rectilinear edges—ie, on the nodes of a rectilinear grid. So hex-
agonal sampling grids, for example, are not used by the model. Again, an appli-
cation can elect to disregard this assumption. As detailed below, the model takes
a rectilinear subset of the integer grid to be the support of an image. The assign-
ment of different sampling rates to different dimensions is application depend-
ent.

Despite all the subtleties in the definition, the model definition on the whole
captures most of the intuitive notions while maintaining a remarkable simplicity.
This is crucial for widespread applicability.

The actual data representation of an image is not specified, in the spirit of ob-
ject-oriented programming. It could be an array, a set of arrays, a tiled (paged)
set of arrays, a multi-resolution and tiled set of arrays, etc

Definition of Sprite and Shape
The full generality of an image is not actually implemented in Altamira

Composer. Instead the special case of a 2D RGBA sprite is emphasized. That is, all
image objects in Altamira Composer are assumed to have exactly two dimen-
sions and four channels, corresponding normally to three color channels (Red,

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

1-12

Green, and Blue) and one matte or alpha channel (Alpha). Furthermore, the al-
pha channel is assumed to be premultiplied. That is, the color channels are as-
sumed normally to have been premultiplied by the alpha channel. Practically this
means that no number in a color channel can exceed the number in the alpha
channel in the corresponding position. In particular, transparent pixels (alpha 0)
have all three color channelvalues 0 also. Such a pixel is referred to as clear—that
is, a completely transparent black pixel is a clear pixel. As argued above how-
ever, it is really a pixel that doesn’t count anymore—that conceptually no longer
exists. Some very efficient data representation scheme for the object might not
even allocate memory space for clear pixels. In summary:

A sprite is an RGBA image where the RGB channels are assumed to rep-
resent color premultiplied by the A, or alpha, channel.

Altamira Composer uses more general images and non-premultiplied alphas
when necessary or convenient, but the most important object is the sprite.

Sprites have shape, which we carefully define as follows:

The shape of a sprite is exactly the subset of its pixels with non-0 alpha.

Thus the shape of a sprite (or image in general) is defined in sampling terms, not
geometrical. It is sometimes convenient—eg, succinct—to describe a shape geo-
metrically, but what is always meant is this: The geometric “shape” is rendered
into an image in an alpha channel, at which point it becomes a shape by our
definition. Notice that shape includes opacity information as well.

Coordinate Systems
The notion of coordinate system usually comes equipped with real space

connotations when applied to images. An image does not have a real coordinate
system. Instead, its pixel “coordinates” are simply the corresponding integer ar-
ray indices. This is easy and already standardized. Nearly all modern program-
ming languages use 0-based indices. The upper left pixel in an image thus has
indices [0][0]12. Its horizontal index increases to the right; its vertical index in-
creases down.

The notion of a real coordinate system is often useful in an imaging applica-
tion. For example, the creative space of Altamira Composer is a 2D continuous,
unbounded space with positive and negative real coordinates in both dimen-
sions. In this application, a set of sprites can each be arbitrarily located in this
space, so we must specify the mapping of a sprite’s integer array indices to the
real coordinates of the space. Altamira Composer uses a creative space coordi-
nate system that makes the mapping of sprites to it extremely easy. Its horizon-
tal, x, axis increases to the right; its vertical, y, axis increases down. Then a sprite
can be positioned at any integer coordinate pair in the space by simply mapping

12 Using C-like array notation.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

1-13

its upper left pixel (with indices [0][0]) to that integer pair. The pixels of an image
or sprite fall always on points with integer coordinates.

The important point is that an image has lost the notion of any coordinate
system that might have existed in the continuous entity that was sampled to
yield the image. It is just a matrix. Any coordinate system associated with it has
to be defined by an explicit mapping, and such a mapping is external to the im-
age object itself.

Altamira Composer also has a notion of depth priority for its sprites, in the
sense that sprites can lie in front of, or overlapping, other sprites. In other words,
there is a front-to-back ordering of any set of sprites. Although there really is no
third creative space dimension in Altamira Composer, it is sometimes convenient
to talk as if there were one, called z, that increases away from the plane as a
viewer might observe it to “see” the sprites. (We have not yet talked about actu-
ally displaying the sprites, so this is an abstract viewer.) Notice that the 3D space
implied by the third coordinate is a right-handed coordinate system. There is no
requirement in our imaging model that this real coordinate system be used in an
app, but it is a remarkably simple one13. There is a requirement, however, that
images and sprites be thought of as arrays and indexed in the standard way.

Continuous Operators on Discrete Sprites
There are two ways to slide a sprite around in this creative space. As usual,

the two conceptions come from the two worlds, continuous and discrete, and we
shall be careful to distinguish them. One way is to move a sprite to a new loca-
tion. This means to reassign its upper-left pixel to a new point with integer coor-
dinates. This is the default action a user of Altamira Composer gets when he
clicks on the displayed representation of a sprite and drags it to a new position.
The corresponding sprite is assigned a new location in the creative space (and
also displayed in a new location in display space, that we have not yet detailed).

The other way is to translate it to an arbitrary real location. As so simply
stated, this action does not make any sense. Sprites aren’t defined on real loca-
tions. Yet this is the usual kind of statement one often hears about images with
no further explanation, as if it were obvious what it means. So here is our first
example of the continuous model we associate with our discrete sprite model
and to which continuous operators are applied. Detailing the translation operator
will explain exactly how to think of continuous operators applied to our discrete
images and sprites.

Our model derives directly from sampling theory. One of the most amazing
theorems we have is the Sampling Theorem. The truth it conveys is what makes
our business of computer graphics possible. Similarly it is what makes animation
possible, print possible, and digital audio possible. This theorem states, in crude

13 It is also very familiar since it is the natural space of the written word for most, if not all, Indo-
European languages. One reads from left to right, from top to bottom, and from front to back.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

1-14

terms, that a continuous thing, with an infinity of points, can be represented14 by
a discrete thing, with a finite set of points called samples, plus a reconstruction
filter, which is a continuous thing again. One way to think of this is that the infi-
nite information of the given continuous entity is somehow summarized in the
much simpler, but still infinite, reconstruction filter. What makes all this work is
that many of our display devices (including audio “displays”) automatically re-
construct point samples by their very nature. That is, the reconstruction filter
does not have to be explicitly applied because the display device automatically
does it. For instance, in a cathode ray tube the photon emission of screen phos-
phors serves to spread a point sample, supplied as a change of voltage to the
tube, as if a reconstruction filter had been applied to it as required by the Sam-
pling Theorem to retrieve the continuous from its discrete representation. That is,
discrete image memory samples driving a CRT appear to cause display of a con-
tinuous image to us15. So here is how to think of a continuous operator on a dis-
crete sprite (cf Figure 2): First, a sprite is reconstructed into a continuous object
by applying a reconstruction filter to its samples, as the Sampling Theorem in-
structs us to do. Then the continuous operator is applied to the continuous object
so obtained. Then the result of the operation, a new continuous object, is resam-
pled by another application of the Sampling Theorem into a new sprite. For ex-
ample, a translation of a sprite is performed by reconstructing the sprite, translat-
ing the continuous entity so obtained by the desired amount, and then resam-
pling at the integers. The alpha channel is reconstructed, translated, and resam-
pled too. Now that we know exactly what how translation is applied to a sprite,
we can safely speak of “translating a sprite”. And this model can be extended
straightforwardly to the formula reconstruct-transform-resample to model any
continuous transformation of an image or sprite. It is important to notice what
we have not said. We have not ever used the word rectangle. In fact, the edge of a
reconstructed sprite is hardly ever accurately represented by a rectangle. See
Figure 2 for details. We have not ever said what the “shape” of a pixel is; we
know by now that this does not make sense. Notice that if any continuous model
of a pixel is to be defined, it should probably be intimately related to the recon-
struction filter being used—in general, not a simple shape. We have not specified
what the reconstruction filter is16. The correct one, according to the Sampling
Theorem, is the so-called “sinc” filter17, but this is infinite in spatial extent and

14 Under certain restrictions, that we shall not be overly concerned about here, that ensure the
continuous entity does not dramatically “change” more often than the discrete samples are taken.
15 By the way, the phosphors of a display should not be confused with a pixel. There is only an
approximate spatial relationship between sets of phosphors and a pixel that drives it. There is not
a one-to-one mapping.
16 The class of reconstruction filters represented by the footprint of Figure 2b is a simple one. The
reconstruction filters of Altamira Composer, for example, are generally bicubic which means that
their footprint extends across two sampling intervals in each direction, not just one as shown in
the figure. So filters generally overlap a great deal.
17 The sinc filter is generated from the function sinx x.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

1-15

thus not practical to use. In practice, a variety of approximations to the sinc filter,
with finite spatial extent, are used. The worst approximation used is called a box
filter, but this is the only one ever used that gives a reconstruction with a rectan-
gular boundary. Altamira Composer generally uses much more sophisticated
cubic filters. The filter used is an implementation detail, but we highly
discourage the use of box filters to ensure high quality results.

(a) A 5x4 image

(b) The footprint of a reconstruction filter

(c) Footprint of image under reconstruction

(d) Footprint of reconstructed image

(e) Reconstruction translated (.5,.5), then
resampled into a 6x5 image

FIGURE 2

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

2-16

CHAPTER 2: BOX ALGEBRA
Box Algebra

Support calculations comprise a major component of image computation,
just as address or pointer calculations are a common component of ordinary
computation. The Altamira model provides a rich arithmetic, called the box alge-
bra18, for support calculations. Perhaps the most elaborate example of how far
one can get in imaging with just box algebra is described in [Smith90] that de-
fines the theory behind the compositing and display engine ultimately used in
Altamira Composer.

By convention, the pixels of an image or sprite always reside on the integer
grid. Each point of the nD integer grid is described by an n-tuple of integer coor-
dinates, an nD integer point. The integer point associated with a pixel in an image
can be thought of as its address in integer coordinate space—not to be confused
with a physical memory location allocated to hold the pixel. The support of an
image is the set of addresses of its pixels. The rectangular support of an image
can be represented by its minimally enclosing box. We again carefully distinguish
a discrete concept from a geometrical one. A box is to be thought of as a (rectilin-
ear) bag of pixels—the support of the pixels actually—not as a rectangle.

Rectangles—real geometrical rectangles—are handy sometimes so points
and boxes with real (float) coordinates are allowed.

This box algebra consists of arithmetic and set operations, extended to points
and boxes, and new operators for box validity, intersection, and construction.
Assignment is extended to points and boxes. The intimate relationship between
the two is spelled out.

Support
When an image or sprite is declared, its pixels are located at all nD integer

points in the rectangular set of points extending from 0 ≡ (0, 0, …, 0) to (size0 -1
size1 -1, …, sizen-1 -1), where sizei is the number of pixels of the image in dimension
i. Any rectangular subset of an image is also an image, or subimage. Subimages
can reside anywhere within an allocated image so may have arbitrary nonnega-
tive coordinates in the range of coordinates spanned by the image. The rectangu-
lar set of integer points which index the pixels of an image or subimage form its
support. Similarly for sprite and subsprite.

Points
Image computations frequently refer to image support points or to reference

points within images. Points are also often used to express offsets, in the sense of
a vector relative the origin of a coordinate system. The model provides two for-
mal data objects for points, called point and floatpoint, for points with integer
and floating-point coordinates, respectively. Henceforth, we restrict ourselves to

18 I attempt to justify the use of the word “algebra” in a later section.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

2-17

the 2D case, because this is what Altamira Composer actually implements. Gen-
eralization to higher dimension is not difficult.

A point has two elements, called coordinates, of type int19. A floatpoint has
two coordinates of type float. The coordinates are assumed to be named x and y.
For convenience, given a (float)point p, its coordinates are referenced as p.x and
p.y. In the actual implementation of Altamira Composer, there are methods used
for setting or returning these coordinates, but it is more succinct in documents
such as this to use the ‘.’ notation. We shall call this an example of a meta-notation.

There is a special point called zeropoint always available that is simply a
point with two 0 coordinates. Altamira Composer implements this as a method
point ZeroPoint(void). A useful method is boolean IsZeroPoint(point p). A
boolean, of course, has two values true or false and is realized in the Windows
development lexicon with type BOOL that has values TRUE or FALSE.

Another very useful method is boolean EqualPoint(point p, point q) that is
true if p is exactly equal to q in both coordinates. We do not represent this in
meta-notation with p == q. See the relational operators below for this case.

A useful point operator in 2D is one that simply exchanges the coordinates of
a point. The Altamira Composer method is point TransposePoint(point p).

A point can be cast to a floatpoint, and vice versa. The action is the one ex-
pected by one familiar with C: ints are cast as floats, coordinate by coordinate, or
the reverse, in which case truncation is performed. In the Altamira Composer
implementation, these casts are performed by explicit methods point IntPoint(
floatpoint p) and floatpoint FloatPoint(point p). The meta-notation here is p = q.
Another conversion supplied is point RoundIntPoint(floatpoint p) that rounds
up each coordinate rather than truncate it.

For any floatpoint p, there are always two interesting points available, the
underpoint and the overpoint. The underpoint of p is the point with each coordi-
nate equal to the integer just less than or equal to—in the sense of the floor()
function—the corresponding coordinate of p. Looking at the real line oriented left
to right with the positive reals increasing toward the right, this is the integer just
left of the given coordinate. Similarly, the overpoint is the point with each coor-
dinate equal to the integer just greater than or equal to it—in the sense of the
ceil() function—ie, the integer just right of the coordinate on the real line as just
described. Meta-notation for these points are p.under and p.over, or equivalently,

p and p . Altamira Composer does not implement the methods for these,
which might be point UnderPoint(floatpoint p) and point OverPoint(floatpoint
p).

The following arithmetic operators are defined for points. We give both a
meta-notation and the Altamira Composer implementation method. Clearly, if
Altamira Composer had been implemented in C++, handy use of overloaded op-
erators could have been used, as indicated by the meta-notation.

19 Undefined types are assumed to be C-like types.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

2-18

p + q point AddPoint(point p, point q) + coordinate-wise
p - q point SubPoint(point p, point q) - coordinate-wise
-p point MinusPoint(point p) - (unary) coordinate-wise
p % mod point ModPoint(point p, point mod) % coordinate-wise
p * q point MulPoint(point p, point q) * coordinate-wise
p / q point DivPoint(point p, point q) / coordinate-wise

For floatpoints:

p * q floatpoint MulFloatPoint(floatpoint p,
floatpoint q)

* coordinate-wise

p / q floatpoint DivFloatPoint(floatpoint p,
floatpoint q)

/ coordinate-wise

A mask is defined to be an int with bits set to 0 or 1.
We define a booleanpoint to be a point with boolean coordinates. There is

an obvious casting allowed between booleanpoint and point. In Altamira Com-
poser we have elected to simply use a point with coordinates values of 0 or 1 to
represent a booleanpoint to avoid proliferation of types.

An example of the use of a mask is the method int PointToMask(point p)
that converts a point to a mask as follows: Bit 0 of the mask is set to 1 if p.x is
non-0, and bit 1 is set if p.y is non-0. This is particularly useful if p represents a
booleanpoint. Conversely, point MaskToPoint(int m) converts a mask to a
point (cf, booleanpoint).

The following relational operators return booleanpoints:

p == q booleanpoint EQPoint(point p, point q) == coordinate-wise
p != q booleanpoint NEPoint(point p, point q) != coordinate-wise
p < q booleanpoint LTPoint(point p, point q) < coordinate-wise
p <= q booleanpoint LEPoint(point p, point q) <= coordinate-wise
p > q booleanpoint GTPoint(point p, point q) > coordinate-wise
p >= q booleanpoint GEPoint(point p, point q) >= coordinate-wise
m ? p : q booleanpoint WherePoint(booleanpoint m,

point p, point q)
?: coordinate-wise

Boxes
The most common support structure required in imaging is the box. Some-

times an entire image computation can be performed on its box alone, without
ever referring to the actual pixel values of the image except for trivial data copy-
ing. See Chapter 3, An Informative Example.

The model provides two formal data objects for boxes, called box and float-
box, for boxes with integer and floating-point coordinates, respectively. There
are several ways to implement a box or floatbox. We shall not dictate an imple-
mentation but require that several characteristics of them should always be
available.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

2-19

For example, a box (box or floatbox) has minmax variables. These are ints
called xmin, xmax, ymin, ymax. They have the obvious meaning of the smallest
and largest coordinate in each dimension represented by a box. Altamira Com-
poser has methods for retrieving minmax variables. For example, int BoxXMax(
box b) returns xmax of b—b.xmax in meta-notation.

Every box has a minpoint and a maxpoint, that are the points (point or float-
point) corresponding to (xmin, ymin) and (xmax, ymax), respectively. Altamira
Composer has methods, such as point BoxMaxPoint(box b), for retrieving these.
b.max and b.min are the maxpoint and minpoint of box b in meta-notation—or
equivalently, b and b .

Every box has a size that is a point. The definition of size is different for box
and floatbox, however. The horizontal size of a box is xmax - xmin + 1, but for a
floatbox it is xmax - xmin. The difference reflects the purpose of the two types. A
box represents the support of an image. Its size is the number of pixels across
and down the image supported. But a floatbox usually represents a geometrical
rectangle, so its size is the actual real width and height of the rectangle repre-
sented. The pertinent Altamira Composer methods here are point BoxSize(box
b) and floatpoint FloatBoxSize(floatbox b). b.size is the size point of box b in
meta-notation.

A box can be invalid—for example, if its xmin is greater than its xmax. So
there is a method boolean ValidBox(box b) that determines box validity. For
completeness, there would be a similar method for floatbox, but we never found
a need for it in Altamira Composer so did not implement it20. There is also the
notion of invalidbox, a box guaranteed to be invalid. Notice that a box may have
its minpoint equal to its maxpoint. This represents an image consisting of a single
pixel. It is not clear whether a floatbox b with b.min = b.max—ie, a “rectangle”
consisting of a single point—should be considered a valid rectangle. See the dis-
cussion of box algebra in a later section.

The equality of two boxes is determined with boolean EqualBox(box b, box
c)21, that is true if b and c represent exactly the same set of pixels—ie, the same
box.

Boxes can be constructed in a variety of useful ways, summarized for box by
the list of construction methods below. There is a similar list for floatbox.

box BoxConstruct(int xmin, int xmax, int ymin, int ymax)
box BoxOriginSize(point origin, point size)
box BoxFromPoints(point p, point q)
box BoxAbsFromPoints(point p, point q)

20 In fact, very little functionality for floatpoints and floatboxs is implemented in Altamira Com-
poser. We implemented just those methods we actually needed.
21 Altamira Composer actually implements many booleans as ints, but this is a minor implemen-
tation detail.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

2-20

The first two of these are self-explanatory. The third constructor creates a box
that minimally includes p and q. So p and q must lie at either end of a diagonal of
the box, thinking of it as a rectangle. It is convenient to have meta-notation for
the operator defined by this constructor; it is p || q, and || is called the box operator.
The fourth one assumes p and q are the minpoint and maxpoint, respectively, of
the box constructed. It can create an invalid box since no checking is done.

A box has several extremal points, called corners. Its minpoint and maxpoint
are two of these. Method point BoxCorner(box b, int mask) returns the corner of
box b specified by the bitmask mask, where the low-order bit represents the x di-
mension and the next-higher bit y. For example, mask = b01 yields the upper right
corner. Meta-notation for this corner is b.corner[b01], or equivalently b.corner[1].

The center of a box, thought of as a rectangle, is obtained with point BoxCen-
ter(box b), that truncates, or floatpoint FloatBoxCenter(box b), that doesn’t.
Meta-notation is b.center.

With every box is associated another called its basebox which is the box
moved to the origin—so that its minpoint is the origin 0. This is b.base in meta-
notation, and the Altamira Composer method is box BaseBox(box b). The corre-
sponding notion for floatbox is not implemented.

A box may be cast to a floatbox and vice versa. In Altamira Composer, the
methods are box IntBox(floatbox b), that truncates, box RoundIntBox(floatbox
b), that rounds, and floatbox FloatBox(box b).

Two very useful notions for floatboxs are those of innerbox and outerbox. The
innerbox of floatbox b is the box on the integers just inside or on the given box.
The outerbox is the box on the integers just outside or on the given box. The Al-
tamira Composer methods are box InnerBox(floatbox b) and box OuterBox(
floatbox b). In meta-notation, b.inner and b.outer represent these two boxes—or

equivalently b and b . In meta-notation, the definitions are b = b || b and

b = b || b , respectively.

Box Operators
Two handy unary box operators are box TransposeBox(box b) and box

RightRotateBox(box b). TransposeBox() swaps the horizontal and vertical sizes
of a box while leaving the minpoint fixed. RightRotateBox() returns a box that is
approximately what you would get if you thought of b as a rectangle and rotated
it about its center. This is a good place to show the box algebra in action with the
code for implementing RightRotateBox(). This is the actual code from Altamira
Composer:

box RightRotateBox(box b) {
 point ptoffset = SubPoint(BoxCenter(b), MinPoint(b));
 point ptmin = SubPoint(BoxCenter(b), TransposePoint(ptoffset));
 return BoxOriginSize(ptmin, TransposePoint(BoxSize(b)));
}

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

2-21

The set of binary box operators is given below:

box IntersectBox(box b, box c)
box UnionBox(box b, box c)
box BoxPlusBox(box b, box c)

IntersectBox() returns the box representing the geometric intersection of its
two arguments, treated as geometric rectangles. The result can be an invalid box
in the case of a complete miss—ie, the two boxes don’t intersect. The intersection
a of box b and box c is computed in x by

a.xmin = c.xmin < b.xmin ? b.xmin : c.xmin
a.xmax = c.xmax > b.xmax ? b.xmax : c.xmax

and similarly for y. Meta-notation for intersection is b && c, and && is called the
intersection operator. The floatbox version is not implemented in Altamira Com-
poser.

UnionBox() returns the minimal box enclosing the two box operands. Meta-
notation for union b || c uses the box operator introduced earlier for construction
of a box from two points. This use is consistent with the former use if a point is
thought of as a degenerate box. The floatbox version is not implemented in Al-
tamira Composer.

BoxPlusBox()—b + c in meta-notation—is defined by

BoxFromPoints(AddPoint(MinPoint(b), MinPoint(c)),
 AddPoint(MaxPoint(b), MaxPoint(c)))

or by b c+b g || b c+d i in meta-notation. It is most useful and understandable when

the minpoint of c is completely negative and the maxpoint is positive. Then the
result is seen to be a box that one would get by taking the union of b with all pos-
sible positions of c so that the origin of c is in or on b. Another way to think of it
in this case is that b is expanded by c. The floatbox version is defined similarly.

The following boolean functions on boxes are defined:

boolean BoxInBox(box b, box c)

returns true if box b lies totally within box c, both treated as rectangles. b may
share an edge with c and still give true. Meta-notation is b c⊆ .

boolean PointInBox(point p, box b)

returns true if p lies in or on b, treated as a rectangle. Meta-notation is p b⊆ .
The following operators combine a box and a point:

box BoxPlusPoint(box b, point p)
box BoxMinusPoint(box b, point p)
floatbox MulFloatBox(floatbox b, floatpoint p)
box BoxExpand(box b, point p)

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

2-22

BoxPlusPoint() offsets box b by point p. Meta-notation is b +p. The definition
in meta-notation is b p b p+ = +b g || b p+d i . The floatbox version is defined simi-

larly.

In general, an operator op between two points can be extended to a box b
and a point p by the form

b op p = (b op p) || (b op p)
and to a box b and a box c by the form

b op c = (b op c) || (b op c).

 BoxMinusPoint(), b - p, is defined similarly to b + p. The floatbox version is
not implemented in Altamira Composer.

MulFloatBox(), b * p, is defined similarly. In this case, it is the box version
that is not implemented. This routine is typically used to scale b by a size p.

BoxExpand() returns a box expanded (or shrunk) by adding p to b.max and
subtracting it from b.min. The floatbox version is not implemented.

A very useful method NotBox() has this prototype in Altamira Composer:

int NotBox(box b, box B,
 box* top, box* bottom, box* left, box* right)

that returns the complement of box b in (assumed to be) surrounding box B as
four boxes: top and bottom are as wide as B; left and right are as high as b. The re-
turn value is a 4-bit flag with one bit corresponding to each returned box. Each
bit is 1 if the corresponding box is valid.

Special Box Routines
After programming with an early version of the concepts at Pixar, I noticed

that I was solving the same two problems over and over again. This is described
in detail in [Smith89b]. I invented two nonobvious functions that greatly eased
this problem:

boolean AlignSrcAndDstBoxesWithOffset(box s, box d, point p,
 box* S, box* D)

This useful routine takes an arbitrary input source box and input destination
box (assumed to define source and destination subimages) and "aligns" them,
where there may be an arbitrary offset between them. So the minpoints are
aligned unless there is a nonzero offset, in which case the source box is aligned
with its minpoint offset relative the minpoint of the destination box. The boxes
and point must lie in the same coordinate system. The output source and desti-
nation boxes define the minimally affected subimages of the images defined by
the input boxes. They represent the intersection of the two input boxes and are
thus the same size. They are, however, generally different boxes since they are
subboxes of an arbitrary pair of input boxes. Let s and d be the input boxes and S

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

2-23

and D be output. Let p be the offset. Then, in meta-notation, the computation is (t
is a temporary box variable):

 t = (d.base - p) && s.base;
 if(!ValidBox(t)) return false;
 *S = t + s.min;
 *D = t + d.min + p;
 return true;

The other useful routine is:

boolean AlignSrcAndDstSubBoxes(box s, box d, box b,
 box* S, box* D)

Given two aligned boxes (as, for example, output by the routine above) and
given a box b which intersects the input source box s of the two, determine the
intersection and the corresponding subbox of the input destination box d. Return
these two subboxes, which are the same size, by definition. S and D are these two
"aligned" subboxes of the given aligned boxes. The routine returns true if the
subboxes are valid else false. If false, then S and D are undefined. b must be in
the same coordinate space as s. Let S and D be the aligned input boxes. Let s and
d be the aligned output boxes, if any. Then the computation in meta-notation is:

 t = S && b;
 if(!ValidBox(t)) return false;
 *S = t;
 *D = t + D.min - S.min;
 return true;

Alternative Algebra22
I have called this a box algebra. How close is it really to an algebra? In this

section, I will show that || and && have the right properties for the additive and
multiplicative operators of an algebra. Then a complement operator will be de-
fined, and identity elements for the additive and multiplicative operators. Then
we will revisit the problem. The purpose of this argument is to show that a com-
plete mathematical algebra can be defined on boxes, but the benefit of doing so is
questionable, considering the additional machinery that has to be put in place.

First, let’s introduce a complement operator ~ by the definition, for box b, of ~b
to be the box obtained by swapping b.min with b.max. This would force a valid
box to be invalid in the interpretation given so far, but in this section we change
the interpretation of the complement of a valid box to be, not an invalid box, but
rather a representation of the set complement of the valid box in toroidal 2D
space. Furthermore, it is understood that the values stored in a minmax pair with

22 This section can be skipped with no substantive loss to the presentation of the theory. It is in-
cluded for completeness.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

2-24

a maximum value less than the minimum value are not included in the interval
represented by the minmax pair. That is, a valid minmax pair includes its end-
points; an invalid one does not. This is required to make the intersection of a box
and its complement the special emptybox, a box that represents enclosure of no
space.

So 2D space is assumed to be toroidally connected here. It will be assumed
infinite for this discussion—that is, the toroid passes through infinity—but it
could be finite and still work. An invalid box is no longer thought of as one ori-
ented from minimum to maximum in the wrong direction, but rather as one
which passes from minimum, through infinity (or at least around the toroid), to
maximum in the same direction as a valid box.

Notice, however, that there is a problem with one-point boxes (minpoint
equal to maxpoint). There is no way to tell if a minmax pair represents the box or
its complement. Assume for the remainder of this discussion that some mecha-
nism is established for handling this special case.

We need another special box, the universalbox that represents enclosure of
all of 2D space. Both universalbox and emptybox are considered valid. A normal
box is any valid or invalid box other than universalbox or emptybox. universal-
box and emptybox will be the identities for the && and || operators, respectively.

Notice that the || operator is commutative. That is, b || c ≡ c || b, for boxes b
and c, because finding minima and maxima is not dependent on order. It is also
idempotent, b || b ≡ b.

The || operator can also be shown to be associative. The only difficulty is
showing that invalid box operands do not destroy the property. The definition of
|| applied to w ≡ (a || b) || c, for boxes w, a, b, and c, determines the minimum of
each dimension i (x or y) to be

w i a i b i c i. min(min(. , .), .)≡
and the maximum to be

w i a i b i c i. max(max(. , .), .)≡ .
Since min and max are associative, || is too, and the proof does not depend on
whether the minmax pairs are valid.

The && operator is commutative by the same argument as for ||. Thus b && c
≡ c && b. It is also idempotent: b && b ≡ b.

The && operator can also be shown to be associative. The only difficulty
again is showing that invalid box operands do not destroy the property. The
definition of && applied to w ≡ (a && b) && c, for boxes w, a, b, and c, deter-
mines the minimum of each dimension i (x or y) to be

w i a i b i c i. max(max(. , .), .)≡
and the maximum to be

w i a i b i c i. min(min(. , .), .)≡ .

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

2-25

Since min and max are associative, && is too, and the proof does not depend on
whether the minmax pairs are valid.

It can also be shown that && is distributive over ||. Let u ≡ a && (b || c) and v
≡ (a && b) || (a && c). Then for each dimension i (x or y),

u i a i b i c i. max(. ,min(. , .))≡
v i a i b i a i c i. min(max(. , .), max(. , .)).≡

Without loss of generality, assume b i c i. .< . Then both u i. and v i. are max(. , .)a i b i .
A similar argument holds for u i. and v i. , so u v≡ . Similarly, || can be shown to
be distributive over &&.

Now consider the complement operator ~. It has the property ~(~b) ≡ b. It
can be shown that the following duality laws hold for ~, ||, and &&: ~(b && c) ≡
~b || ~c and ~(b || c) ≡ ~b && ~c. Minmax arguments similar to those for associa-
tivity and distributivity can be used to prove these.

So ~, &&, and || satisfy nearly all the requirements for a Boolean algebra on
boxes, except for the existence of identity elements for && and ||. But b && uni-
versalbox ≡ b and b || emptybox ≡ b, so universalbox and emptybox are these
identity elements.

Now we do the hard part. We redefine &&, and then || similarly, to handle
the new interpretation of boxes. Thus the && intersection operator definition is
changed so that the two sets represented by the operands are intersected as sets,
it being understood that the set represented by an invalid box passes through in-
finity and is, in fact, the set complement of the set enclosed by the invalid box.
We have to handle the case of a box representing partial infinity—that passes
through infinity in only one dimension. If the resulting set intersection is empty
or in any other way cannot be represented by a normal box, then the result is de-
fined to be the emptybox.

The algorithm for the redefined && follows, for operand boxes b and c and
return box w. It is applied to each dimension i (x or y).

if(ValidBox(b) && ValidBox(c)) { // Both boxes valid
 if(c i b i. .> || c i b i. .<) return emptybox.i;
 w i. = (c i b i. .>) ? c i. : b i. ;

 w i. = (c i b i. .<) ? c i. : b i. ;
}
else if(!ValidBox(b) && ValidBox(c)) { // One box valid, the other not
 if((c i b i. .> && c i b i. .<) || (c i b i. .≤ && c i b i. .≥)) return emptybox.i;
 w i. = (c i b i. .< || c i b i. .>) ? c i. : b i. ;

 w i. = (c i b i. .> || c i b i. .<) ? c i. : b i. ;
}
else { // Both boxes invalid

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

2-26

 if(c i b i. .≤ || c i b i. .≥) return emptybox.i;
 w i. = (c i b i. .<) ? b i. : c i. ;

 w i. = (c i b i. .>) ? b i. : c i. ;
}
return w.i;

The || operator can be redefined with a similarly complex algorithm. I con-
sider these algorithms too expensive to justify implementing a full Boolean alge-
bra. Furthermore, the baggage required for representing universalbox and emp-
tybox, partially universalbox and partially emptybox, and the complement of
one-point boxes is not considered justified.

I will continue to refer the “box algebra”, knowing that we could, if neces-
sary, extend it to an algebra but not doing so for the reasons just given.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

3-27

CHAPTER 3: IMAGE ALGEBRA
Image Algebra

We come at last to the meat and potatoes of the theory: image computations.
The purpose of this chapter is to extend the model to include precise descriptions
of images and sprites, operations that can be performed on them, and operations
that can be performed between them. Just as the preceding chapter defined
points and boxes and built up an algebra of operators on them for support calcu-
lations, this chapter defines channels, pixels, and images and an algebra23 be-
tween them for image calculations. Since each image has a support box by defini-
tion, box algebra concepts are integral to the image algebra developed here.
That’s why we so carefully developed them in the last chapter.

Channels
As already discussed, a pixel in the model may have an arbitrary finite num-

ber of channels, where a pixel channel represents a single numerical sample of
some continuum. Similarly, an image may have any number of channels. So the
channel is a fundamental object in the model, which will be used to formally de-
fine pixels and images, hence sprites.

One of the simplifications of the Altamira model is to allow only one chan-
neltype per image (hence pixel). Mixtures of different channeltype are handled at
a higher level—eg, at the “imagestruct” level in Altamira Composer. It is conven-
ient to adopt for valid channeltypes those supported by a development environ-
ment. The model abstracts these to the following example types that are intended
to map naturally to common data types:

untn intn floatn
where n is the number of bits, typically 8, 16, 32, etc This list is not meant to be
exhaustive; it is extensible at will. unt stands for unsigned integer and int for
signed integer. A float represents a floating-point number. Practically, Altamira
Composer maps unt8 to C’s unsigned char and used this one type for almost
every image, sprite, and pixel. The other types that Altamira Composer at least
recognizes are unt32, float32, and float64.

The code, however, is written to handle unts of arbitrary typesize, measured
in bytes. For example, unt8 has typesize 1. The Altamira Composer implementa-
tion of the model provides the methods int ChannelSize(channel) and int Chan-
nelType(channel) to access these basic characteristics of a channel. The former
returns the byte count of the typesize of the given channel, and the latter returns
an index into an enumeration of available channeltypes.

The other fundamental characteristic of a channel object is the number of
channels it contains. This is called its ply. Altamira Composer provides method
int ChannelPly(channel) for this important number.

23 We do not attempt to extend this “algebra” to a mathematically complete one, as we did for the
box algebra.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

3-28

Given a channel ch, meta-notation ch.size, ch.type, and ch.ply represent the
characteristics above. As will be seen, a channel is used to define an image
(hence a sprite) and a pixel, so these objects will inherit the channel characteris-
tics. The meta-notation is extended in the obvious way to I.size, I.type, and I.ply
for image I and px.size, px.type, and px.ply for pixel px. Similarly Altamira Com-
poser provides corresponding methods with the names you might guess—eg,
ImagePly() and PixelType().

Finally, to completely define a channel, a permutation must be specified. This
is a mapping of the channels to themselves. The default permutation is the iden-
tity. Thus an image might have channels called R, G, B, and A as its natural order
(identity permutation), but to interchange G and B channels, say, only the per-
mutation would have to be changed. So data in an image or pixel channel is ac-
cessed via indirection through the channel permutation.

Methods exist for testing equality of channels and channeltypes.

Color
It is not necessary to discuss color before defining pixels and images with

more care, but the RGBA definition of sprite tells us that color is an important
topic in that subset of the theory. So we discuss here the color objects that are
used with sprites.

There are two integer color objects, rgbcolor and rgbacolor, and two float
color objects, rgbfloatcolor and rgbafloatcolor24. rgb[a]color holds RGB[A] tu-
ples as integers, and rgb[a]floatcolor holds RGB[A] tuples as reals. Meta-
notation is straightforward. For example, rgbacolor rgba has R, G, B, and A com-
ponents referred to as rgba.r, rgba.g, rgba.b, and rgba.a, respectively. There are
methods in Altamira Composer, of course, for setting and retrieving color com-
ponents to and from colors.

The semantics of these color tuples can be any 3D or 4D color desired. For
example, Altamira Composer used rgbcolor objects to hold Hwb (Hue, white-
ness, blackness) and HSV (Hue, Saturation, Value) representations of color. See
[SmithLyons92] for details on the newer, simpler Hwb color representation. The
point is, the color objects do not have to hold RGB color representations, despite
the name. There are color space conversion methods for converting between RGB
and Hwb and between RGB and HSV—eg, rgbcolor* HwbToRGB(rgbcolor*
phwb)25.

These types can be converted to one another in the ways that you might
suppose. rgb[a]color can be promoted directly to rgb[a]floatcolor. An example
method in Altamira Composer is rgbafloatcolor FloatRGBA(rgbacolor rgba). If

24 Altamira Composer actually uses names RGBColorType, RGBAColorType, RGBFloatColor-
type, and RGBAFloatColorType, respectively.
25 These are not actually implemented in Altamira Composer, but the app does contain the con-
versions indicated, in a different guise—eg, between pixels.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

3-29

an alpha value is required to complete a conversion, it must be provided as in
rgbacolor RGBToRGBA(rgbcolor rgb, int alpha).

 rgb[a]floatcolor can be truncated or rounded to rgb[a]color. Example meth-
ods are rgbacolor IntRGBA(rgbafloatcolor rgba) and rgbacolor RoundIntRGBA(
rgbafloatcolor rgba).

Pixels
An object of obvious usefulness in image computing is the pixel, that holds

all channels of one pixel of an image. A channel object and data for each channel
defines a pixel. In Altamira Composer, the constructor is pixel* PixelConstruct(
int ply, int type, int* permute) that indirectly constructs a channel from the three
arguments26.

RGB and RGBA pixels are of special interest and utility in image computing.
These are pixels that hold an RGB color without or with an alpha value, respec-
tively. These are so handy that Altamira Composer provides special constructors
for them that essentially take a channel and an rgb[a]color and produce an ap-
propriate pixel: pixel* RGB[A]PixelConstruct(int ply, int type, int* permute,
rgb[a]color c).

Pixels may be assigned to one another. In meta-notation px = qx for two pix-
els px and qx. This is straightforward if both pixels have the same channel struc-
ture. The general assignment has to interpret different channeltypes and differ-
ent plys. The interpretation we have selected is this: channeltypes convert in the
usual C-like ways. The channel structure of px, the receiving pixel, is unchanged
by an assignment. If the ply of qx exceeds that of px, then the channelvalues of qx
are simply assigned in order to the channelvalues of px. If the ply of px exceeds
that of qx, then after the channels of qx are depleted, the remaining channels of px
are assigned the last channelvalue of qx. This accomplishes the following for ex-
ample: If qx is a single-ply pixel holding the single unt8 value 255, and px is a 3-
ply unt8 pixel, then px = qx puts a 255 in all three channels of px. Altamira Com-
poser realizes this assignment with the routine void Pixel_Pixel(pixel* px, pixel*
qx).

Pixels can be converted to colors and vice versa—rgb = px, or px = rgb, for ex-
ample, in meta-notation, for rgbcolor rgb and pixel px, and similarly for RGBA.
Care must be taken for pixels without the natural ply of three for rgbcolor or
four for rgbacolor. In the Altamira Composer implementation of the model,
pixel* Pixel_RGBAColor(pixel* px, rgbacolor rgba) simply returns NULL if
px.ply is not equal to four. Otherwise the assignment happens as would be ex-
pected. In the other direction, rgbacolor RGBAColor_Pixel(pixel* px) copies as
many channelvalues as there are available, in order, to corresponding compo-
nents of an rgbacolor, and any remaining components are set to 0. Similarly for
conversion between pixel and rgbcolor.

26 For clarity, I omit another argument CompStruct* pComp that Altamira Composer threads
through most routines. I do this as a general rule in this paper.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

3-30

Altamira Composer provides a full set of color conversion routines that op-
erate on pixels rather than colors. These include pixel* RgbToHwbPixel(pixel*
px) and pixel* HwbToRgbPixel(pixel* px) for conversions to and from RGB and
Hwb, and similarly for RGB and HSV. All these routines return an error return of
NULL if the ply of px is less than three.

Images, Cards, and Sprites
At last, we come to the most important object of all in image computing. In

Chapter 1, I defined the image as a rectangular array of pixels. This is the concep-
tual model of the image. The actual implementation may be quite different. In
other words, in true object-oriented fashion, the image object implementation is
not dictated to be an array of pixel objects, but it could be.

There are two popular ways to implement an image consistent with the Al-
tamira model—layered or interleaved. The layered method allocates image mem-
ory channel-wise, the interleaved method pixel-wise. It is important to under-
stand, however, that the model does dictate either. In fact, there are numerous
ways to represent an image, but these two classes of ways deserve further expli-
cation.

It is easier to explain the different storage methods by referring to a concrete
example. We use the RGBA image as an example, because it is of particular inter-
est in computer graphics. An example of a layered method of representing an
RGBA image allots separate pieces of memory to hold channel R, channel G,
channel B, and channel A. Thus it maintains four pointers to the four pieces of
memory. These four pieces of memory are conceived of as lying in register above
one another in layers. The principal advantage of this method is the ease with
which the ply of an image can be changed—from single channel rectangular
monochrome images to 64-channel, say, spectral band satellite images with one
channel per spectral band filter. Another advantage is that the separate pieces of
channel memory do not have to be contiguous. The disadvantage is the need for
four pointers and their management.

An example of an interleaved method would allocate one contiguous piece
of memory that would hold R, G, B, and A of the first pixel, then R, G, B, and A
of the second pixel and so forth. The principal advantage of this method is that
all color components are available in the vicinity of a single pointer—within
small fixed offsets. The disadvantage is the large block of continguous memory
required, plus the inability to add or subtract channels without massive data
movement.

The image object of our model does care which of these, if either is adopted
for actual implementation. The image could be implemented, for example, with
virtual tiles and multiple resolutions.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

3-31

The image object constructor requires only a size and a channel object. For
example, in Altamira Composer the image constructor is essentially27 image*
ImageConstruct(point size, channel* pch, int flag). The minpoint of an image is
always [0][0] (but see the discussion of subimage below). The size of the image—
meta-notation: I.size for image I—gives the width in the x coordinate and the
height in the y. The type, ply, and mask of an image are inherited from its chan-
nelobject, I.channel in meta-notation, as discussed in the preceding chapter.
Likewise for the permutation of the channel object. Meta-notations I.box,
I.basebox, and I.minpoint represent the obvious information about image I.

In the Altamira Composer implementation, the flag argument to the con-
structor is used for a variety of things. For example, an image is by default a lay-
ered representation, but the flag may be used to make it interleaved. It is also
used to indicate whether an image with an alpha channel is to be interpreted to
have premultiplied alpha or not (see [Smith95] for details).

Some useful mask methods are, in the Altamira Composer implementation,
booleanpixel* ImageMask(image* I), that returns a pixel representing I.mask,
channel by channel, boolean ImageMaskData(image* I, int ch), that returns the
mask for the given channel of image I, and int ImageMaskInt(image* I), that re-
turns a bitmask for all channels of I.

The model has the notion of the emptyimage. The Altamira Composer im-
plementation uses method image* EmptyImageConstruct(void) to construct
emptyimage, which has no data and a size of zeropoint (0x0). It just simply ex-
ists. Since it must respond to all image methods, the Altamira Composer imple-
mentation arbitrarily has it return a ply of 1, a type of unt8, and the identity
permutation. Method boolean ValidImage(image* I) checks to see if an image is
the emptyimage or not. It is sufficient to check that the size is zeropoint.

Another very useful special image is called a card. A card is a constant image
object—an image with every pixel identical to all others and of arbitrary size. It
can therefore be represented very succinctly. The Altamira Composer constructor
is image* Card(pixel* px, int flag), where the given pixel defines the constant
pixel. Method boolean ImageCard(image* I) checks to see if an image is a card
or not.

An extremely interesting special case of an image object is the sprite. As de-
fined in Chapter 1, a sprite is an RGBA image, where the alpha is assumed to be
premultiplied—that is, the RGB color channels are assumed each to have been
premultiplied by the corresponding A in the alpha channel. For all practical pur-
poses, the pixels with zero alpha can be considered simply to not exist. See
[Smith95] for the full argument. It is not necessary to allocate any storage for
them, although it is still common to do so. There should be a method boolean
ImageSprite(image* I) that checks to see if an image is a sprite or not. Altamira

27 As before, the CompStruct* pComp object that is threaded throughout Altamira Composer is
not shown for succinctness of presentation.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

3-32

Composer does not implement this nor the sprite explicitly although nearly all
image objects in the application are sprites.

Recall from Chapter 1 that the shape of a sprite, or any image with an alpha,
is the subset of its pixels with non-0 alpha.

Some methods intended more for sprites than general images follow:
boolean RGBAtPoint(image* I, point p, rgbacolor rgba) returns the RGB

color at point p of sprite I. This routine returns false if p is not on or within I.box.
Similarly boolean AlphaAtPoint(image* I, point p, rgbacolor rgba) returns the
alpha A at the point.

image* Card_RGBA(rgbcolor rgba) constructs a card sprite of the given
color and alpha.

A useful notion for an image object is that of its bounding box. This is the
minimal bounding box that contains pixels unequal to a given pixel. Usually the
given pixel is clear (all 0s) and the bounding box then delineates those pixels that
are “interesting”—that is, that have non-0 information in them. In the case of
sprites, all pixels outside the bounding box (bbox, for short, pronounced “bee-
box”) may be discarded if memory space has been allocated for them. In Al-
tamira Composer the method is box ImageBoundingBox(image* I, pixel* px).
The box returned is relative the box of the given image. It is invalidbox if all pix-
els equal the given pixel.

Subimages and Subsprites
A powerful notion of the model is that of subimage—and hence of subsprite. A

subimage is an image that is a subset of another image. Thus a subimage is a rec-
tilinear subset of the set of pixels in a given image. The important point is that a
subimage is not separately allocated memory. Its memory is that used by the par-
ent image. A major distinction is that its minpoint does not have to be zeropoint.
A subimage is a way to focus attention within an image. But a subimage is an
image so far as any image method is concerned. So, for example, a subimage
may have subimages. A subimage is a child, of course, to its parent image or su-
bimage.

Our model always specifies the subimage of an image relative to the parent
image. The Altamira Composer method is image* SubImage(image* I, box b). It
works like this: First, an error (NULL for Altamira Composer) is returned if ei-
ther I does not exist or b is invalid. Second, b is intersected with I.basebox to de-
lineate the subimage pixels. In other words, b is cropped28, if necessary, to the
given image. Then a new image object is allocated that inherits most characteris-
tics from the given image, but has the size of the given box (cropped, if neces-
sary), is marked a subimage, and refers to the data in the parent image rather
than allocating its own. Its minpoint is set to the parent’s minpoint plus the min-
point of the given box (again, cropped, if necessary).

28 The word cropped is chosen carefully and is part of the model. The term clipped is reserved for
geometric restriction. So boxes are cropped, but rectangles are clipped.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

3-33

Since a subimage is an image, all pixel references in it are relative its upper
left pixel. The only exception is its minpoint that is located absolutely with re-
spect to the image at the root of the hierarchy above it—ie, the image with the
actual memory allocation for the pixels, called the progenitor. The reason for this
exception is so that absolute coordinates can always be converted to relative co-
ordinates or vice versa. The important point is that the model uses relative references
for subimages by default.

A more general notion of subimage is also available in the model. It is called
a plyimage to draw the distinction. It is just like a subimage with the addition of
the ability to select a subset of the channels of the parent image. In other words, a
plyimage is a subimage in depth as well as height and width. The Altamira
Composer method is image* PlyImage(image* I, box b, channel* pch). The ply,
mask, and permutation of the plyimage are taken from the given channel object.
Care must be taken to ensure that the permutation given to the plyimage is di-
rectly a permutation of the channels of the progenitor image.

An elaborate example of the use of boxes and subimages is given in
[Smith90].

Image Assignment
The most fundamental image operator is image assignment. I will carefully

discuss what it means to assign one image to another in the Altamira sprite
model of image computing because the concepts involved apply to most other
binary image operators and operations.

First, I will give an example of what is not meant by image assignment. To
copy one image to another is not image assignment because no pixels are copied.
A copy of an image object is simply a copy of the (programming) object. Thus it
is really a special case of a subimage, where the subimage is the entire parent im-
age. Both copies point to the same pixel data. Thus there are two names for the
same image. The Altamira Composer method for this is void ImageCopy(im-
age* Idst, image* Isrc).

Image assignment will be denoted in meta-notation by I = J (“I gets J”) for
two images I and J. In general, I and J have different size, ply, and type. The most
general formulation of image assignment consists of three steps: Align, intersect,
and copy.

Alignment determines the mapping between array indices of the two images.
By default, two images are assumed to have their minpoints aligned. This means
that, by default, the upper left pixel of the source (sub)image is mapped to the
upper left pixel of the destination (sub)image. Since subimages are images, I will
omit the “(sub)” prefix from hereon.

Intersection is the determination of the largest box of pixels shared by the two
aligned images. This is computed, of course, by intersecting the two aligned im-
age boxes. Alignment and intersection take into account the fact that two images
are generally of different size.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

3-34

Copying, in this context, is the copying of pixels one-to-one from the source
subimage defined by the intersection box to the destination subimage defined by
that same box. By definition of intersection, there are exactly the same number of
pixels in both, and the two subimages have the same size. Copying must also
take into account the fact that in general two images have different ply and type.
It must also honor the permutation of the source image and any channel masking
that may be in effect.

In practice, alignment and intersection are taken care of in a box algebra
computation preceding the actual assignment with the copying step. That is, in
practice it is convenient to segment the general assignment problem into two
steps, a box algebra step for alignment and intersection, and an image algebra
step for actual pixel manipulation. Thus, in the Altamira Composer implementa-
tion of the model, the fundamental image assignment method is image* Image_J(
image* I, image* J)—also read “I gets J”—that assigns image J to image I and re-
turns image I or an error (NULL) in case of a problem. This routines assumes
alignment and intersection have already been performed and hence, without
checking, that the given two images are the same size.

In general, the copying of pixels must take into account that I and J might
have different type and do appropriate conversions during the “copy”. In the Al-
tamira Composer implementation, we make the simplifying assumption that all
images of interest have the same type across an assignment. That is, we assume
that if a conversion is to be made it can be assumed to have already been made
before invoking an assignment (or almost any other binary operation). Thus Im-
age_J() further assumes I and J have the same type.

The problems of different ply and masking across an assignment must be
handled. The model has a simple solution for this: The channels of J are mapped
in order to the channels of I, where ordering is determined by the permutation
structures of the two images, and masked channels are simply ignored. If I has
ply greater than J, then its excess channels are simply untouched in an assign-
ment from J. If J has ply greater than I, then the assignment simply ceases when
there are no more receiving channels in I. Once the channels are mapped to one
another, then assignment becomes as simple as it sounds: simple copying of
depth-aligned channel components from one image to the other.

The generalization to arbitrary binary operator op is straightforward. Instead
of doing a copy between the depth-aligned channel components, the operation
denoted by op is performed. There is typically an assignment of the result of this
operation to yet another image, but we already know what it means to do an as-
signment. The general meta-notation is I = J op K.

The generalization to n-ary operations, for arbitrary number n of images, is
likewise straightforward. In fact, I = J op K is an example of a ternary operation.
All n images are aligned, intersected, and subimaged to make them the same
size. Any conversions are made to make them the same type. Depth alignment is
performed and the operation is performed. Typically the last step in the opera-

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

3-35

tion is an assignment of the result to a destination image. In the following, sev-
eral of the most often used operations are explained fully: Those that composite
images under the control of yet other images.

An Informative Example
With the box algebra machinery and no more image algebra than we have

presented so far, we can perform interesting image computations. Here is a good
example. See if you can figure out how it works. This is essentially C code di-
rectly from Altamira Composer, with certain simplifications to improve readabil-
ity.

image* Image_CycleI(image* I, point p)
{
 /* Cycle given image in place, p.x columns horizontally and
 * p.y rows vertically. p.x, p.y can be negative. The cycle is
 * circular—that is, columns or rows shifted off one side of
 * an image reappear on the opposite side, so no data is discarded.
 */
 box quadbox[4], bxoffset;
 image *Quad[4], *psubim;
 int m;
 point mask, q, c0, c1, Imaxpoint, ptoffset, ptmaxbox;
 point OnePoint = PointConstruct(1, 1);

 if(EqualPoint(p, ZeroPoint))
 return I;

 // Make offset modulo the image size
 p = ModPoint(p, ImageSize(I));

 // Make all shifts positive
 p = WherePoint(LTPoint(p, ZeroPoint),
 AddPoint(p, ImageSize(I)), p);
 Imaxpoint = MaxPoint(BaseBox(ImageBox(I)));
 q = SubPoint(Imaxpoint, p);

 for(m = 0; m < 4; m++) {
 // Define important subimages and save them
 mask = MaskToPoint(m);

 c0 = WherePoint(mask, AddPoint(q, OnePoint), q);
 if(PointToMask(GTPoint(c0, Imaxpoint))) {
 Quad[m] = EmptyImageConstruct();
 continue;
 }

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

3-36

 c1 = WherePoint(mask, Imaxpoint, ZeroPoint);
 quadbox[m] = BoxFromPoints(c0, c1);

 Quad[m] = ImageConstruct(BoxSize(quadbox[m]),
 ImageChannel(I),
 IMFLAG_NORMAL);

 psubim = SubImage(I, quadbox[m]);
 Image_J(Quad[m], psubim);
 ImageDestruct(psubim);
 }

 // Restore subimages to new locations
 for(m = 0; m < 4; m++) {
 if(!ValidImage(Quad[m]))
 continue;
 ptoffset = MulPoint(p, MaskToPoint(~m));
 ptmaxbox = AddPoint(
 ptoffset,
 MaxPoint(BaseBox(ImageBox(Quad[m]))));
 bxoffset = BoxFromPoints(ptoffset, ptmaxbox);
 psubim = SubImage(I, bxoffset);
 Image_J(psubim, Quad[m]);
 ImageDestruct(psubim);
 }

 for(m = 0; m < 4; m++)
 ImageDestruct(Quad[m]);

 return I;
}

Image Compositing Operators and “Expressions”
As explained in detail in [Smith95], the over operator of [PorterDuff84] is

fundamental to sprite applications. It is implemented in Altamira Composer by
the general routine image* Image_ImAIpJ(image* I, image* J, image* A)—read
“I gets I minus A times I plus J”. This routine assumes images I, J, and A are the
same size and type, as explained above, and returns image I. If I and J are
premultiplied images—eg, sprites—and if A is the alpha channel of J, then this
routine implements I = J over I. Again, see [Smith95] for full details, including
efficient programming approximations. This routine is implemented using the
INT_PRELERP() macro defined there.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

3-37

The implementation of such a routine must take into account the problems
mentioned in the preceding section: I, J, and A may have different ply. J or A
might be an image card (it would not make sense for I to be a card).

Although the model does not require it, routines as fundamental as this one
should probably be written to be interruptable and to return status information
regularly during its execution. These desirable additions are useful so long as an
image computation requires seconds or even minutes to execute on an image.
This is still true today. Perhaps in a decade, general computing will be so fast as
to obviate the need for them. Nearly all Altamira Composer image computation
routines are implemented with these features.

Following is a list of sample imaging “expressions” implemented in Altamira
Composer. The first two are those already described above. In all cases, the rou-
tine returns its first image* argument, and the arguments are the necessary im-
ages, as image*s, or other parameters as specified.

Routine Name Interpretation
Image_J I = J
Image_ImAIpJ I = I - A*I + J
Image_ImAIpAJ I = I - A*I + A*J
Image_ImBIpAJ I = I - B*I + A*J
Image_ImABIpAJ I = I - A*B*I + A*J
Image_ImBIpABJ I = I - B*I + A*B*J
Image_ImABIpABJ I = I - A*B*I + A*B*J
Image_ImCBIpCAJ I = I - C*B*I + C*A*J
Image_JmCBJpCAK I = J - C*B*J + C*A*K
Image_ImCDBIpCDAJ I = I - C*D*B*I + C*D*A*J
Image_AI I = I*A
Image_CDJ I = C*D*J
Image_ImOIpOJ I = I - O*I + O*J, float opacity O
Image_ImAOIpOJ I = I - A*O*I + O*J, float opacity O
Image_ImAOIpAOJ I = I - A*O*I + A*O*J, float opacity O
Image_MaxJK I = max(J, K)
Image_ImJ I = I - J
Image_IdivA I = I / A
Image_SI I = I*S, double scalar S

It is not hard to imagine implementing a language with expressions such as
these. Pixar’s IceMan is such a language. Altamira Composer does not imple-
ment a language. We opted instead to implement the common “expressions”
above, plus a handful more, as highly optimized routines and found that this
was sufficient for our purposes.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

3-38

Image Functions
The “expressions” above are important image functions, but the list of possi-

ble functions is infinite. The field of image computation is as large as that of
computation. In this section we categorize image functions as an aid to under-
standing them. The implementations of these ultimately use some of the “expres-
sions” above. The following taxonomy is based on what a function does, rather
than how it does it.

Spatial transformations—transforms, for short. These are resampling func-
tions (see Chapter 1, Continuous Operators on Discrete Sprites, and Figure 2)
that perform geometric spatial operations on a continuous object reconstructed
from an image using the Sampling Theorem. These include the familiar scale, ro-
tate, skew, and perspective transforms. Also included is bilinear warping, that
maps an image, reconstructed into an object with a rectangular footprint, onto an
arbitrary convex quadrilateral before resampling. All of these transforms can be
mathematically represented with a 4x4 matrix, and they can be arbitrarily ap-
plied in any order. Since there is a small loss of information at each application of
a spatial transform (because we cannot practically use the ideal, infinite recon-
struction filter required by the Sampling Theorem), it is important to not literally
concatenate transforms. Rather, an original source image is maintained; a 4x4
matrix representing the mathematical concatenation of other 4x4 matrices is con-
structed; the resulting matrix is applied to the source image so that there is only
ever a single generation of loss allowed.

Permutations—permutes, for short. The permutes change the order of the
pixels within an image but create no new pixels as do resampling functions.
There is no loss of information in a permutation. The permutes include flipping
an image up-to-down and right-to-left, transposing the pixels of an image about
either of its diagonals, rotations (without resampling) clockwise or counter-
clockwise by exactly 90 degrees, and cyclic shift of the image horizontally or ver-
tically.

Warps. This is a large class of resampling functions. Unlike the spatial trans-
forms, however, repeated application causes deterioration of an image. Included
among the warps are barrel and bow distortions, familiar to the video world, and
so-called morphing.

Enhancements. These include the classic image processing functions such as
brightness and contrast adjustment, tone control, hue and saturation shifts, color
balancing, softening, sharpening, and so on. In general, these functions adjust
pixel contents without actually changing the pictorial content of an image, the
position of its pixels, or its shape.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

3-39

Textures. These important functions capture the notion of texturing29 one im-
age by the contents of another. So the textures always require two sprites, a
source and destination sprite. In the simplest case, color pixels from the source
are simply copied to the aligned pixels in the destination. In a slightly more
complete implementation, colors and transparencies are copied to the destination
from the source. In both these cases, the result has the shape essentially of the
destination (although in the latter case, the shape can be modified somewhat by
transparencies from the source sprite). The shape of the result can only be less
than or equal that of the destination. In another variation, the sprites are glued
together: Clear pixels in the destination can be modified by source pixels, within
the bounding box of the destination. Another interesting member of this family
of functions is snip: The shape pixels of the destination sprite are erased (cleared,
set to 0s) by the overlapping shape pixels of the source. A powerful subclass of
texture functions are the mapping functions. For example, transparency map alters
the transparencies of the destination image by the intensities of the color pixels of
the source; the destination pixel becomes more transparent where the corre-
sponding source pixel is dimmer. There are many possible variations on this
theme.

Touchup. This is a large class of functions that can be thought of as simply
the hand-driven version of any image computation. For example, so-called
“painting” is a touchup function. It is the hand-driven version of a function that
simply copies a card to a sprite. If the source is a relatively small image, called a
brush, and if the position of the brush image relative the destination sprite is de-
termined interactively, say with a mouse or tablet stylus, then we have painting.
More accurately, the brush is an alpha image that controls how a card is copied
to a destination sprite. We call this class of functions touchup, rather than paint,
because the simulation of painting is only one possible hand-driven function.
Another is smearing of the image in the direction of brush movement. Another is
simple transfer of pixels from one sprite to another under control of the brush as
a third, controlling image. If the source pixels always remain constant, then this
is called cloning. Erasing is the hand-driven version of snipping described above
in the textures. There are many possible variations here as well. An extreme is
demonstrated in Altamira Composer, where many of the warps can be applied to
an image under the handheld brush.

Creation. This class of functions is used to generate new sprites, either from
scratch or by deconstructing existing sprites and images. A very popular way of
creating sprites is to render them from a 2D or 3D geometrical representation.
This automatically generates an accurate and appropriate alpha channel for the
resulting sprite. Altamira Composer includes some very simple tools for doing

29 I borrowed this term from 3D computer graphics, where it means that an image is used to give
detail to the surface of a 3D geometrical object. Here we use it to mean that an image is used to
give detail to the “surface” of a(nother) 2D image object.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

3-40

this. These are tools for modeling ellipses, rectangles, splines, and polygons and
then rendering them into colored images. I reemphasize that it is the renderings
of these 2D geometrical models that determines shape, not the geometry itself.
The geometrical models can be rendered directly into solid color sprites, can be
used to snip a given sprite, or can be used to extract pixels from a given sprite by
a texturing operation. You can think of this last variation as using the geometri-
cally-derived shape as a “cookie cutter” to extract a new sprite from an older one.
Text is another powerful way to create shapes—for example, True Type or Post-
Script Type 1 defined text is rendered into shapes that can be used just as the
simple geometrically defined ones above are. Another popular method for sprite
creation is called color lifting30. This defines a new sprite shape to be those pixels
in a given sprite with colors equal to (or near) a given color. Then the corre-
sponding pixels of the source sprite are “lifted” into the new sprite at those loca-
tions.

Rather than continuing to list functions, you can get an idea of the breadth of
functionality available by looking at Altamira Composer, of course, but also at
any popular image editing application, such as Adobe Photoshop. Both these
apps offer hundreds of functions. In the next section we go the next step beyond
single sprites and image editing to multiple sprites and image composition, terri-
tory pioneered by Altamira Composer.

Image Composition
In the bad old days, an image required an expensive piece of memory for

storage. So an image connoted large and expensive. If there were enough mem-
ory to hold an image, then a user did things to it, passed filters over it, painted
on it, etc I call this the monolithic model of image computing—an image as a sin-
gle large, heavy stone. Most imaging applications in the market today are still
built on the monolithic conception. This is to be contrasted with the new mental
model that is now appropriate. I could coin a term and call it the polylithic model
but I think the idea is better carried by simply thinking of a stack of brightly col-
ored pebbles—small, light, and numerous—that can be rearranged at will. Then,
in addition to the image editing functions of yore (the monolithic era) are all the
functions needed for arrangement of mutiple images—sprites as we are calling
these nimble things. Thus image editing graduates into image composition. Thus
an image composition application can be thought of as a tool for creating ar-
rangements, or compositions, of sprites, with a full image editor available for
each sprite. You will not be surprised to learn that Altamira Composer is the first
such application.

So in this section, I extend our model to include compositions of sprites and
functions for working with compositions. I will borrow heavily from an existing
class of picture composition tools in the computer software market for our
model. This is the class of geometry-based applications called drawing, or illus-

30 Often called, for no meaningful reason, “magic wand”. We will use a meaningful term.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

3-41

tration, programs. In a drawing program, a user works in a creative space (cf
Chaper 1) that is 2D and infinite in all directions. Objects are placed in this space
arbitrarily. For example, a triangle here, a cylinder there, and a sphere between
them. These objects are, of course, geometrical objects, not sprites.

Our model is exactly the same as that for the drawing programs but with
sprites (image objects) substituted for geometry objects. This very simple, pic-
ture-based idea has been passed up for years in the imaging world, which still
insists on using a much less appropriate text-based metaphor that assumes eve-
rything is pasted down into a single (monolithic) object and unpasted only tem-
porarily when “selected”. Old selections are lost and have to be re-extracted for
future use. Adobe Photoshop is the classic example of this paradigm.

Let’s look further at the drawing metaphor that we shall adopt in our model.
There is nothing behind the geometrical objects in the creative space. In a display
of the creative space, something has to be displayed behind them. It is the so-
called “desktop”. It is just whatever is back there. When printed to paper, the
white paper shows there. This is called the void in our model. The void, or desk-
top, is not printed. It is not part of the creation. One unfortunate legacy of the
monolithic era is the notion that images are always rectangular and that, there-
fore, there is always a background image “back there”. In our model, there is no
need for a background image. One can always designate a given sprite or sprites
to be the “background” but this is only convenient sometimes for naming and
not part of the model. When printing a composition of sprites, the void simply
doesn’t print. Just as the geometrical drawing apps have always not printed the
desktop.

Another unfortunate legacy of the monolithic era is the notion that images
have edges. In particular, the edges of the rectangular background image define
the extent of a “composition”. If a “selection” is dragged past the edge of the
background, it is automatically cropped to that edge31. In our model, there are no
edges to a composition in creative space. Any edges are an artifact of the decision
about which part of a composition is to be displayed in display space. It is still
usually true that displays (monitors, film frames, video frames, photographs,
pieces of paper) tend to be rectangular. The point is that this restriction does not
have to be invoked until a display space decision is made. Again, this is exactly
how creation and display are divided from one another in the illustration apps.
In summary, in our model, cropping and pasting only happen at the last step,
and only when instructed to happen by the user/creator.

Functions that we borrow directly from the geometrical forebears are depth
ordering, alignment, and multiple selection. See any illustration program for
how these work. By the way, “selection” becomes, in this model, simply pointing

31 This is the acid test of an application to see if it has graduated out of the Monolithic Age. Try it
on your favorite imaging app and see what happens.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

3-42

to a sprite—say, by clicking on it—just as in the illustration programs. Since ob-
jects are not pasted together, they are always available with a simple click.

There are two notions of sets of sprites in the model: There are multiple selec-
tions of sprites, and there are groups of sprites. A multiple selection is a set of
sprites that are treated as individuals. Thus a rotate-about-center function ap-
plied to a multiple selection causes each sprite in the set to rotate individually
about its center. A group, on the other hand, is a set of sprites treated as if they
constituted a single sprite. The same rotate function applied to a group would
rotate the entire set around the center of the single “meta-sprite”. There can be
groups of groups but not multiple selections of multiple selections. That is, a
group can have hierarchical structure, but a multiple selection cannot.

 Image Composition Display
Our model celebrates the notion that the creation of a composition and the

display of it are two separate processes. Many of the features outlined above for
image composition are performed by a designer interacting with the display of
the composition. The sprites themselves reside in unknown and arbitrary loca-
tions in a computer or network. The actual pasting of the sprites together to form
a final composite is the last process performed by the designer when the design
is known to be complete. It is called flattening. But the display of a composition
appears to paste them together at all times. It is this fiction that makes the app
work, because it appears to the user that all the sprites are actually in one space,
as designed.

In Altamira Composer, we borrowed yet another notion from the geometri-
cal modeling world. We let the user have multiple views of a composition. No-
tice that this is just like having multiple cameras looking at a 3D synthetic scene
in classic computer graphics. Of course, this is just a restatement of the creative v
display space notion. The important point is that each view, or display, must be
recomputed every time a change is made to the composition. A recomposite of
all visible sprites must happen for each view. Just keep in mind that this is for
display only. The official flattening happens only under user directive, presuma-
bly as a last step, because it is difficult if not impossible to reverse (and why we
argue against the old text-based paradigm that forces one to do exactly that).

So the rapid composition and recomposition of sprites is fundamental to a
pleasing display of an image composition application. In our model, the current
sprite is the one that an indicated operation happens to (or current sprites in case
of a multiple selection). It can be at any level in the depth ordering of the compo-
sition. A good composition algorithm must take this into account. A tour de force
example of the use of box algebra and the over image composition operator is
presented in detail in [Smith90], as mentioned several times. I will not present
the details here. Suffice it to say that the algorithm presented there seeks to
minimize the number of pixels that actually have to be touched to do a recompo-
site, and this requires taking careful note of depth information.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

3-43

Sprite Picking
One of the problems I had to solve that may not seem to be a problem is that

of picking a particular sprite in a display of sometimes dozens or even hundreds
of partially overlapping, partially transparent sprites. How does one do it? I tried
several different schemes before hitting on the one described in detail in
[Smith90] and adopted into our model.

The basic notion is that when there is no ambiguity, then a click within the
bounding box of a sprite is sufficient to select, or pick, it. This is true even if the
sprite is mostly clear and you click on the void. Thus you can be sloppy in your
picking if there is no ambiguity.

If you click on the void and are not within the bounding box of any sprite,
then you simply miss.

In the case of ambiguity, the topmost pixel with non-0 alpha that you touch
picks the corresponding sprite. Thus it is the shape of a sprite that is used to de-
termine if picking has occurred. A way to say this is: If you can see it, you can
pick it—so long as you understand that seeing through a partially transparent
object does not count. The partially transparent object would be picked instead.

If you click on a stack of sprites, but on a void pixel showing through them
all, then it is the bottom sprite you get, assuming the click is inside its bounding
box.

This picking scheme has worked very well, so well—so intuitively—that it is
a surprise perhaps to discover that it had to be invented.

Future Directions
I indicated earlier that once we clearly understand 2D imaging then we can

proceed to integrate it with 2D geometry. I would like to discuss this again now
that we have the full machinery of our model at hand. The important point is
that the old monolithic model did not lend itself to an integration with geometry,
but the polylithic, stack-of-brightly-colored pebbles model does. The careful
separation of geometry and sampling makes the convergence easier because we
know exactly what we are doing.

So the future looks like this—and this is exactly what we are pursuing in the
Media Foundation: 2D geometric objects are added to compositions of 2D sprites
(sampled objects). Since they are both objects and both displayed in image space,
this is straightforward. What has to be added are definitions of interactions be-
tween such objects. For example, what does it mean to paint on a 2D geometrical
object? What does it mean to glue a geometric object to an image object? What
does it mean to blur a geometric object. And so forth. I believe that the answers
to these questions are generally straightforward, once we have the common
space in which to speak of them and are careful of the distinctions between them.

Then why not add 3D geometry (or even 3D sampling) objects? Sure. And
then sound? Again, sure. And animation and interaction? Sure. In the common
space advocated here the digital convergence is easy to visualize.

A Sprite Theory of Image Computing

Microsoft Tech Memo 5 Alvy

4-44

REFERENCES
[PorterDuff84] Porter, Thomas, and Duff, Tom, Compositing Digital Images,

Computer Graphics, Vol 18, No 3, Jul 1984, 253-259. SIG-
GRAPH’84 Conference Proceedings. The matting algebra and
premultiplied alpha are announced to the world.

[Smith88] Smith, Alvy Ray, Geometry and Imaging, Computer Graphics
World, Nov 1988, 90-94. I start drawing the fundamental distinc-
tion more sharply.

[Smith89a] Smith, Alvy Ray, VAIL—The IceMan Volume and Imaging Lan-
guage, Tech Memo 203, Pixar, Jan 1989. The IceMan language
and hence the referenced paper are proprietary to Pixar, but the
objects defined in the paper are not, to the extent that they are
embedded in Altamira Composer, purchased by Microsoft.

[Smith89b] Smith, Alvy Ray, Two Useful Box Routines, Tech Memo 216, Pixar,
Dec 1989. These routines are embedded in Altamira Composer.

[Smith90] Smith, Alvy Ray, An RGBA Window System, Featuring Prioritized
Full Color Images of Arbitrary Shape and Transparency and a Novel
Picking Scheme for Them, Tech Memo 221, Pixar, Jul 1990. The
concepts in this paper are embedded in Altamira Composer.

[SmithLyons92] Smith, Alvy Ray, and Lyons, Eric, Hwb—A More Intuitive Hue-
Based Color Model, Tech Memo 0, Altamira Software Corp (also
Microsoft Tech Memo 0, by inheritance), Sep 1992. This color
model is embedded in Altamira Composer as its color selector
method and dialog. I propose that it replace my old HSV model.
It is easily superior to HSL.

[Smith95] Smith, Alvy Ray, Image Compositing Fundamentals, Tech Memo 4,
Microsoft, Jun 1995. The argument for sprites and premultiplied
alpha becomes rock solid.

