
Microsoft v4.15

IImmaaggee CCoommppoossiittiinngg FFuunnddaammeennttaallss
Technical Memo 4

Alvy Ray Smith
August 15, 1995

Abstract
This is a short introduction to the efficient calculation of image compositions.

Some of the techniques shown here are not well known, and should be. In par-
ticular, we will explain the difference between premultiplied alpha and not1.
These two related notions are often confused, or not even understood. We shall
show that premultiplied alpha is more efficient, yields more elegant formulas,
and occurs commonly in practice. We shall show that the non-premultiplied al-
pha formulation is not closed on over, the fundamental image compositing op-
erator—as usually defined. Most importantly, the notion of premultiplied alpha
leads directly to the notion of image object, or sprite—a shaped image with partial
transparencies.

The Basic Model
There are two ways to think of the alpha of a pixel. As is usual in computer

graphics, one interpretation comes from the geometry half of the world and the
other from the imaging half. Geometers think of “pixels” as geometrical areas in-
tersected by geometrical objects2. For them, alpha is the percentage coverage of a
pixel by a geometrical object. Imagers think of pixels as point samples of a con-
tinuum. For them, alpha is the opacity at each sample. In the end, it is the imaging
model that dominates, because a geometric picture must be reduced to point
samples to display—it must be rendered. Thus, during rendering coverage is al-
ways converted to opacity, and all geometry is lost.

The Porter-Duff matting algebra [PorterDuff84] that underlies what we pre-
sent here is based on a model that is easiest to understand by alternating between
the two conceptions3.

The elementary imaging operation that we wish to elaborate is called, in
[PorterDuff84], the over operator. It captures the notion of compositing image J

1 These are called associated and unassociated alpha as well. I can never remember which is which
so don’t use the terms.
2 A little square is a very common model for the “pixel”. I place this term in quotes to remind us
that this is not a pixel (a sample) but a model for possible geometric contributions to the final
sample. The last thing I want to promulgate is the notion that a pixel is a little square.
3 The Porter-Duff paper is an excellent example of why the little square model for contributions to
a pixel has become confused, in the geometry-based computer graphics world, with the pixel it-
self. All illustrations in that paper use the little square model. A unit circle could have been used
equally effectively, however—or any other unit area region.

Image Compositing Fundamentals

Microsoft Tech Memo 4 Alvy

2

over image I, where either I or J or both may be partially transparent. For ease,
we will think of images I and J as being rectangular, the same size, and each hav-
ing four channels—three for RGB color and one for alpha (ie, opacity).

Think of the following geometrical model: A “pixel” is an area α percent
covered by an opaque geometrical object with color A. Thus the amount of color
contributed by that area is αA. That is, we average the color over the pixel and
come up with a single new color representing the entire area—the color αA is a
point sample.

Now think of another opaque geometrical object with color B added to the
original “pixel” area. Disregard for a moment the other geometrical object there.
Assume that the new geometrical object has coverage of the “pixel” equal to β . So
the pixel is contributing color βB due to this object. This again is a point sample
representing the color of the second object.

But now we use the geometry model to conceptually combine the contribu-
tions of the two objects in the “pixel” area. The second object is allowing only
(1-β) percent of the pixel area to be transparent to any objects behind it. We sim-
ply ignore the actual geometry of the two objects at this point and assume that, in
general, the pixel is allowing (1-β) times the color from behind, αA, to show. This
is added to the color due to the top object βB. So the total color of object with
color B over object with color A is βB + (1-β)αA.

Notice that this result could be completely wrong if the geometry of the sec-
ond object exactly coincided with that of the first. The bottom color would not
contribute at all to the final color in this special case. So the model we are using is
an approximation for the general case of combining two images where we no
longer have any idea of how the alpha at a point was determined. In an image
there is no way to tell whether a point sample with a partial opacity comes from
a partially transparent surface or from an opaque surface partially occluding the
area represented by the point sample.

Premultiplied Alpha
The formula we have just derived from basic principles is this: For composite

color C obtained by placing a pixel with color B and alpha β over a pixel with
color A and alpha α:

C = βB + (1-β)αA = βB + αA - βαA
Notice how many multiplies this formula implies—three4 at each pixel for

each color component. Considering that this formula is extremely basic to com-
puter graphics and that multiplies are expensive5, the early researchers at Lucas-
film and Pixar observed that this formula could be reduced to one multiply per
pixel per component if the alphas were premultiplied times the color of an image.

4 Two, actually, with a little rearrangement: T = αA, C = β(B - T) + T.
5 They were especially expensive then. Now we would just like to avoid extra steps.

Image Compositing Fundamentals

Microsoft Tech Memo 4 Alvy

3

That is, if the color channels of image I contained, not color A, but weighted color
αA, and similarly for image J, then the formula above reduces to

C’ = B’ + (1-β)A’ = B’ + A’ - βA’
where the primes indicate colors have been premultiplied by their corresponding
alphas. The images are said to have premultiplied alphas. Of course, it is the color
channels that are different, not the alpha channels, despite this terminology.

There is a subtlety here that will cause trouble if not identified. We have
called the resulting color here C’ as if it were different from the color C computed
above in the non-premultiplied alpha case. But it isn’t! It is the same computa-
tion, where entities on the right have been abbreviated because of premultiplica-
tion. We will return to this problem later.

Images with premultiplied alphas have been used for many years very suc-
cessfully by Lucasfilm, Pixar, and Altamira in hundreds of thousands, if not mil-
lions, of images. The TIFF image storage format is aware, as of version 6.0, of
premultiplied alphas.

Composite Alpha
We have given the formulas above for the color channels in a composite of

two partially transparent images. What is the composite alpha channel formula?
Notice that it will be the same for both cases, since premultiplication only applies
to the color channels.

The same model as used above for composite color can be used for compos-
ite alpha. The average opacity of the “pixel” partially covered by the first geo-
metric object is β , and that for the second geometric object is α. But the geometry
of the model allows only (1-β) of the lower light filter to be effective. So the com-
posite alpha is

γ = β + (1-β)α = β + α - αβ
in either case, premultiplied or not.

An Elegant Formulation and a Flawed One
Let’s collect together the results from above.

 Compositing Formulas for over, Colors Not Premultiplied by Alpha:
C’ = βB + (1-β)αA = βB + αA - βαA

γ = β + (1-β)α = β + α - αβ

Compositing Formula for over, Colors Premultiplied by Alpha:
C’ = B’ + (1-β)A’ = B’ + A’ - βA’

In the latter case, we need only one formula to represent the color channels
and the alpha channel, a more elegant formulation certainly than the former case
that requires a formula for the color channels different from that for the alpha
channel.

Now we will see why the former case is flawed.

Image Compositing Fundamentals

Microsoft Tech Memo 4 Alvy

4

The “Second-Composition” Problem
You may have noticed that this time I used C’ for the left side of the non-

premultipled colors case, since it has already been observed that C and C’ are the
same color in either formulation. Recall that the prime indicates a color that has
been premultiplied by its alpha. So you see the problem: The first formulation
maps non-premultiplied colors into premultiplied colors. The second maps
premultiplied colors into premultiplied colors. In other words, the usual defini-
tion of over for non-premultiplied images is not closed on over, a problem we
will fix below.

This problem is called the “second-composition” problem because it shows
up in second (or subsequent) compositions using results from first (or earlier)
compositions. Let image K be the result obtained above for J over I. Suppose we
want to perform a second non-premultiplied composition of L over K, where im-
age L has color D and alpha δ. In order to use the formula above we need the
non-premultiplied color of K and its alpha γ. The non-premultipled color of K is
C’ divided by γ. So the second-composition formula is

2nd-Compositing Formulas for over, Colors Not Premultiplied by Alpha:
E’ = δD + (1-δ)γ(C’/γ) = δD + (1-δ)C’ = δD + C’ - δC’

The alpha channel calculation is as before, and the premultiplied case works as
before. That is, there is no second-composition problem for the premultiplied
case—another example of its relative elegance.

But the non-premultiplied case is a mess. One either has to divide through
by the new alpha at each pixel in order to use the original (first-composition)
formulas, or one has to carry around a mixture of premultiplied and nonpremul-
tiplied information to use the simpler second-composition formulas.

So here are the cleanest formulations for the two cases, where we do not clut-
ter up our minds with two different models during the course of a series of com-
positions and where there is no need for the confusing first- and second-
composition distinction—ie, these formulations are closed on over6:

Closed Compositing Formulas for over, Colors Not Premultiplied by Alpha:
γ = β + (1-β)α = β + α - αβ

C’ = βB + (1-β)αA = βB + αA - βαA
C = C’/γ

Closed Compositing Formula for over, Colors Premultiplied by Alpha:

C’ = B’ + (1-β)A’ = B’ + A’ - βA’

6 I just discovered (November 5, 1996) in a correspondence with Marc Levoy that he and Bruce
Wallace came up with an equivalent formulation for the nonpremultiplied case in [Wallace81], p.
257.

Image Compositing Fundamentals

Microsoft Tech Memo 4 Alvy

5

Many practitioners are unaware of the second-composition problem because
they often only do one composition—eg, as the last stage of a 3D rendering pro-
ject: all the objects are rendered as sprites7, then they are composited, and never
used again. Or more importantly, composites of them are never used for future
composites. It is the modern world of cheap memory that has made it possible
and common to recomposite a set of sprites many times and to use composites of
composites frequently.

Non-Premultiplication Problems
The analysis above looks pretty bad for the non-premultiplied case, but let’s

look at it more closely. The bad step is the divide by alpha to return a non-
premultiplied color. In the typical case of integer colors and integer alphas, this
leads to inaccuracy. And it is not even possible if alpha is 0. But we can some-
times avoid this divide and/or loss of information.

A new alpha of 0 at a composite pixel means (1) that, in the coverage model,
neither image I nor J was present at that pixel, or (2) that, in the opacity model,
both colors are known but both opacities are 0, or (3) a mixture of these. In case
(1), we know that there is no defined color so could store an indication of this in
the color channels. In case (2), both colors have to be summarized somehow as
one color—e.,g. an equal mixture of the two is stored. There must be a loss of
color mixing information here. In case (3), one image is not present and we know
the color of the other, so there is no problem.

In the non-0 alpha case, if we have a geometric model of the contributions to
a pixel, then we can compute, in the reals, what the mixture of colors at the pixel
should be—as opposed to using the integer divide technique above. If all we
have is an opacity model at the pixel, then again there must be a loss of color
mixing information.

This analysis shows that we can improve the non-premultiplied case but not
completely. But, of course, there is no such problem if one is guaranteed to use a
sprite for compositing exactly once. More carefully, there is no problem if one is
guaranteed to never use the results of a composition for future compositions.

Premultiplication Problems
Is there anything wrong with the premultiplied alpha case? Well, yes there is.

There are times when one wants the full non-premultiplied color of a pixel. This
requires a divide by the corresponding alpha, hence the problems with integer
divide and loss of information mentioned above.

So what to do? It seems clear that for reusable sprite objects—particularly
reusuable composites of them—the premultiplied case is superior, except for the
problem just mentioned. How often does it occur? And how substantial is it
when it does occur?

7 I am loosening the terminology here, temporarily, to extend “sprite-hood” to non-premultiplied
images with an alpha.

Image Compositing Fundamentals

Microsoft Tech Memo 4 Alvy

6

My experience in the graphic arts use of sprites—the Altamira Composer
image compositing application, for example—is that the error introduced by the
occasional need to divide out alpha is typically so minor as to be unnoticed. In
fact, no user has ever noticed it in Altamira Composer to my knowledge. The di-
vide by zero problem never occurs because, by definition, a clear pixel (alpha
and all color components equal to 0) does not “exist” so is ignored.

I am reminded of a division of the geometry-based computer graphics world
into what is usually called CAD and, say, CGI. The distinction is that CAD re-
quires accurate geometry because it is being used by architects and engineers.
CGI is only required to look good. Accuracy can be, and often is, sacrificed in
CGI to get a satisfactory look quickly.

The point is that there is a similar division of the sampling-based side of the
computer picturing world, based on user type or market. Clearly, accuracy is
very important to such users of images as medical doctors and astronomers. But
use of images in the graphics arts is much more forgiving. Here, again, the result
must be pleasing rather than accurate.

Some Useful Approximations
We derive now some very useful integer approximations for the implied

floating point operations in the formulas above. These apply in the case of the
very common 8-bit channel—eg, 24-bit color image plus 8-bit alpha.

The integer approximations below are derived from the geometric series
a + ar + ar2 + ar3 + ... = a/(1-r)

for |r| < 1. We apply the series this way: Let r = 1/256. Notice that
t/255 ≡ (t/256)/(1 - r).

Thus, given two numbers a and b, each on [0, 255] and with product t on [0, 2552],
we get t/255 on [0, 255]—as desired—by using the first two terms of the geomet-
ric series:

(t>>8) + (t>>16) + (t>>24) + ...
Notice that

(t>>8) + (t>>16) ≡ ((t>>8) + t) >> 8 ≡ ((t<<8) + t) >> 16.
This is captured by the INT_MULT() definition below which assumes a and b are
each on [0,255], t is an int temporary variable that holds the product a*b, which is
returned on [0,255], as if one of a or b were a fraction on [0,1] used to weight the
other—eg, as an alpha. In the style of the language C:

#define INT_MULT(a,b,t) ((t) = (a) * (b), ((((t)>>8) + (t)) >>8))

We now use the INT_MULT() function to define other useful approximations.
(We will present an even better macro for it below.)

Classic linear interpolation—or lerp—as it is affectionately called in computer
graphics—is defined in floating point below. It is read “lerp p to q by alpha a”. a
is assumed to lie on [0, 1]. Note that a ≡ 0 implies p; a ≡ 1 implies q.

#define FLOAT_LERP(p, q, a) ((a) * ((q) - (p)) + (p))

Image Compositing Fundamentals

Microsoft Tech Memo 4 Alvy

7

In this integer version t is an int temporary variable:

#define INT_LERP(p, q, a, t) ((p) + INT_MULT(a, ((q) - (p)), t))

Premultiplied lerp assumes q has been premultiplied by a.

#define FLOAT_PRELERP(p, q, a) ((p) + (q) - (a) * (p))

In this integer version t is an int temporary variable:

#define INT_PRELERP(p, q, a, t) ((p) + (q) - INT_MULT(a, p, t))

So our formulas for composition (with ‘ (prime) consistently representing
premultiplication) become, in the 8-bits per channel case:

8-Bit Compositing Formulas for over, Colors Not Premultiplied by Alpha:
C’ = INT_LERP(INT_MULT(A, α, t0), B, β , t1)

γ = INT_PRELERP(α, β , β , t)
C = C’/γ

8-Bit Compositing Formula for over, Colors Premultiplied by Alpha:

C’ = INT_PRELERP(A’, B’, β , t)

Caution! The approximations above must be used with care. In particular,
the case α = 1 is a problem. Note that INT_MULT(255, 255, t) is 254, not 255. Also
note that INT_PRELERP(255, 255, 255, t) is 256, which is even worse. One-bit er-
rors at other than the high or low end of the range are often tolerable, but not at
the extremes. In practice, this is not usually a problem. A typical software loop
looks for the special cases of α = 0 and α = 1, and skips the interpolation compu-
tation there. These two cases are so common in imaging that this technique saves
much computation. We see from the note above that it is important to check for
the αα = 1 case and avoid the approximation in that case.

The INT_MULT macro above suffers from 1-bit errors, in about half of the
cases. There are better approximations if one does not mind absorbing a little
more cost, if special casing is undesirable, or if hardware implementation is the
goal. One pointed out to me by Microsoft colleague John Snyder is to use three
terms in the power series approximation: (t>>8) + (t>>16) + (t>>24). This loses no
bits, but requires 32-bit arithmetic as written.

Another, pointed out by friend and longtime colleague Jim Blinn at Cal Tech,
is to use roundoff in the approximation, rather than truncation: ((t>>8) + t +
0x80)>>8. This is good, but it still suffers from 1-bit errors in a few cases (24 to be
exact). Jim determined that rounding t before shifting got rid of even these er-
rors. So the best macro is this:

#define INT_MULT(a,b,t) ((t) = (a) * (b) + 0x80, ((((t)>>8) + (t))>>8))

Image Compositing Fundamentals

Microsoft Tech Memo 4 Alvy

8

at a cost of one additional add. It has no 1-bit errors and can be performed in 16-
bit arithmetic8. See [Blinn94a, Blinn94b] for Jim’s arguments in support of pre-
multiplied alpha.

Image Objects or Sprites
The most important result of using premultiplied alphas is conceptual—the

conceptual change from
Old Notion: An image is a rectangular array of pixels. The alpha channel, if any,
tells how each pixel is to be treated. Each image pixel has a color that may be
masked on or off (or partially on) by the corresponding alpha channel pixel.

to
New Notion: An image is a shaped array of pixels with partial transparencies.
The alpha channel is intrinsic. The image pixels at transparent pixels (alpha
zero) simply do not conceptually exist.

This new notion is captured in the sprite object (or image object, as I formerly
called it).

I argue strongly for Microsoft (and wider) adoption of and promulgation of
the premultiplied alpha concept that led us to the notion of sprite, and for the
elegance of its formulation. It has problems but they are far fewer than those for
the alternative.

Acknowledgement
I keep learning about the subtleties of images and alphas by writing papers

such as this. The second-composition problem was never clear to me before. I
owe John Bradstreet—former colleague of mine at Pixar and currently in Micro-
soft’s Consumer Imaging group—thanks for a probing and ultimately inspiring
question, raised by an early draft of this paper. Thanks also to Jim Kajiya for his
comments on closure, and to Jim Blinn and John Snyder on improved lerp ap-
proximations.

References
[Blinn94a] Blinn, James F., Jim Blinn’s Corner: Compositing Part 1: Theory, IEEE

Computer Graphics & Applications, Sep 1994, 83-87.
[Blinn94b] Blinn, James F., Jim Blinn’s Corner: Compositing Part 2: Practice,

IEEE Computer Graphics & Applications, Nov 1994, 78-82.
[PorterDuff84] Porter, Thomas, and Duff, Tom, Compositing Digital Images, Com-

puter Graphics, Vol 18, No 3, Jul 1984, 253-259. SIGGRAPH’84
Conference Proceedings.

[Wallace81] Wallace, Bruce A., Merging and Transformation of Raster Images for
Cartoon Animation, Computer Graphics, Vol 15, No 3, Aug 1981,
253-262. SIGGRAPH’81 Conference Proceedings.

8 And can be realized in one register in six Intel instructions! Here they are (also by Jim Blinn and
independently by Microsoft’s David Jones): mov al,a; mul b; add ax,0x80; add al,ah; adc ah,0;
mov r,ah.

